
Observation-Guided Diffusion Probabilistic Models

Junoh Kang* 1 Jinyoung Choi* 1 Sungik Choi3 Bohyung Han1,2

Computer Vision Laboratory, 1ECE & 2IPAI, Seoul National University 3LG AI Research
{junoh.kang, jin0.choi, bhhan}@snu.ac.kr, sungik.choi@lgresearch.ai

NFEs
10 20 50 100 10 20 50 100

B
as

el
in

e
+

E
ul

er
O

G
D

M
+

E
ul

er
O

G
D

M
+

S-
PN

D
M

Figure 1. Comparisons of images generated by the ADM backbone on the CelebA dataset with deterministic samplers using the same
initial noise but different NFEs. The entries on the leftmost column of the figure denote the combinations of the training and inference
methods. (Left) The baseline model generates samples with inconsistent attributes, e.g., gender, hair, etc., by varying NFEs while our
approach preserves such properties. (Right) The samples generated by the baseline method with a small number of NFEs tend to be blurry
and unrealistic. Also, they have unnaturally bright and textureless areas around the chin of the person.

Abstract

We propose a novel diffusion-based image generation
method called the observation-guided diffusion probabilis-
tic model (OGDM), which effectively addresses the trade-
off between quality control and fast sampling. Our ap-
proach reestablishes the training objective by integrating
the guidance of the observation process with the Markov
chain in a principled way. This is achieved by introduc-
ing an additional loss term derived from the observation
based on a conditional discriminator on noise level, which
employs a Bernoulli distribution indicating whether its in-
put lies on the (noisy) real manifold or not. This strat-
egy allows us to optimize the more accurate negative log-
likelihood induced in the inference stage especially when
the number of function evaluations is limited. The proposed

*indicates equal contribution.

training scheme is also advantageous even when incorpo-
rated only into the fine-tuning process, and it is compati-
ble with various fast inference strategies since our method
yields better denoising networks using the exactly the same
inference procedure without incurring extra computational
cost. We demonstrate the effectiveness of our training al-
gorithm using diverse inference techniques on strong dif-
fusion model baselines. Our implementation is available at
https://github.com/Junoh-Kang/OGDM_edm.

1. Introduction

Diffusion probabilistic models [7, 27] have shown im-
pressive generation performance in various domains in-
cluding image [3, 25], 3D shapes [38], point cloud [21],
speech [9, 15], graph [8, 24], and many others. The key idea

1

https://github.com/Junoh-Kang/OGDM_edm

 forward
 transition
 emission

● ● ●● ● ●

Figure 2. The graphical model of the proposed denoising process
with observations.

behind these approaches is to formulate data generation as a
series of denoising steps of the diffusion process, which se-
quentially corrupts training data towards a random sample
drawn from a prior distribution, e.g., Gaussian distribution.

As diffusion models are trained with an explicit objec-
tive, i.e., maximizing log-likelihood, they are advantageous
over Generative Adversarial Networks (GANs) [5] in terms
of learning stability and sample diversity. Moreover, the
iterative backward processes and accompanying sampling
strategies further improve the quality of samples at the ex-
pense of computational efficiency; the tedious inference
process involving thousands of network forwarding steps is
a critical drawback of diffusion models.

The step size of diffusion models has a significant im-
pact on the expressiveness of the models as the Gaussian
assumption imposed on the reverse (denoising) sampling
holds only when the step size is sufficiently small [27].
On the other hand, the backward distribution deviates from
the Gaussian assumption as the step size grows, resulting
in an inaccurate modeling. This exacerbates the discrep-
ancy between the training objective and the negative log-
likelihood at inference. Consequently, performance degra-
dation is inevitable with coarse time steps. To alleviate the
deviation from the true objective caused by large step sizes,
our approach incorporates an observation of each state cor-
responding to the perturbed data. To be specific, we con-
sider the data corruption and denoising processes to follow
the transition probabilities that respectively align with the
forward and backward distributions of DDPM [7] while an
observation at each time step following the emission prob-
ability aids in achieving a more accurate backward predic-
tion. Fig. 2 depicts the graphical model of our method.

Our approach offers a significant benefit in the sense that
it precisely maximizes the log-likelihood at inference even
when employing fast sampling strategies with large step
sizes. The observation process plays an important role dur-
ing training to adjust the denoising steps towards a more
accurate data manifold especially when the reverse process
deviates from the Gaussian distribution. When it comes to
the inference stage, the observation process is no longer an
accountable factor and hence incurs no additional computa-
tional overhead for sampling.

The main question in this approach is what is observable
given a state at each time step. We define an observation

following the Bernoulli distribution on the probability of
whether noisy data lies on the manifold of real data with
the corresponding noise level. From a practical point of
view, we implement this observation with a score of a time-
dependent discriminator, taking either true denoised sam-
ples or fake ones given by the learned denoising network.

Our main contributions are summarized below:
• We propose an observation-guided diffusion probabilis-

tic model, which accelerates inference procedure while
maintaining high sample quality. Our approach only af-
fects the training procedures, resulting in no extra com-
putational or memory overhead during inference.

• We derive a principled surrogate loss maximizing the log-
likelihood in the observation-guided setting and show its
effectiveness in minimizing the KL-divergence between
temporally coarse forward and backward processes.

• Our training objective is applicable to various inference
methods with proper adjustments, which allows us to uti-
lize diverse fast sampling strategies that further improve
sample quality.

• The proposed technique can be employed for training
from scratch or for fine-tuning from pretrained models;
compatibility with fine-tuning significantly enhances the
practicality of our method.
The rest of this paper is organized as follows. Sec. 2 re-

views related work and Sec. 3 describes our main algorithm
with the justification of the proposed objective. We present
experimental results and analyses in Sec. 4, discuss future
work in Sec. 5, and conclude our paper in Sec. 6.

2. Related Work
There exists a series of studies on diffusion probabilistic
models [7, 27, 29] that have contributed to accelerated sam-
pling. A simple and intuitive method is to simply skip in-
termediate time steps and sample a subset of the predefined
time steps used for training as suggested by DDIM [28].
By interpreting the diffusion model as solving a specific
SDE [29], advanced numerical SDE or ODE solvers [4,
10, 12, 18, 29] are introduced to speed up the backward
process. For instance, EDM [12] employs a second-order
Heun’s method [31] as its ODE solver, demonstrating that
simply adopting existing numerical methods can improve
performance. On the other hand, some papers further re-
fine numerical solvers tailored for diffusion models. For ex-
ample, PNDM [18] provides a pseudo-numerical solver by
combining DDIM and high-order classical numerical meth-
ods such as Runge-Kutta [31] and linear multi-step [33],
and GENIE [4] applies a higher-order solver to the DDIM
ODE.

On the other hand, [1, 2, 23, 35] aim to find the better
(optimal) parameters of the reverse process with or with-
out training. For instance, Analytic-DPM [2] presents a

2

training-free inference algorithm by estimating the optimal
reverse variances under shortened inference steps and com-
puting the KL-divergence between the corresponding for-
ward and reverse processes in analytic forms. Knowledge
distillation [20, 22, 26, 30] is another direction for better
optimization, where a single time step in a student model
learns to simulate the representations from multiple denois-
ing steps in a teacher model. Note that our approach is or-
thogonal and complementary to the aforementioned studies
since our goal is to train better denoising networks robust to
inference with large step sizes.

There are a few of methods [13, 34, 36] that adopt
time-dependent discriminators with diffusion process, yet
their motivations and intentions differ significantly from
ours. The time-dependent discriminator in DDGAN [36]
is designed to guide the generator in approximating non-
Gaussian reverse processes while Diffusion-GAN [34] em-
ploys diffusion process to mitigate overfitting of the dis-
criminator. DG [13], on the other hand, utilize the discrim-
inator during inference stages to adjust the score estimation
additionally. In contrast, the discriminator in our approach
serves as a means to provide observations to the diffusion
models during the training phase, without being involved in
the inference phase.

3. Observation-Guided Diffusion Probabilistic
Models

This section describes the mathematical details of our al-
gorithm and analyzes how to interpret and implement the
derived objective function.

3.1. Properties

The proposed observation-guided diffusion probabilistic
model, defined by the graphical model in Fig. 2, involves
two stochastic processes: the state process {xt}Tt=0 and the
observation process {yt}Tt=0. The transition and emission
probabilities of the forward process, denoted by q(xt|xt−1)
and q(yt|xt), respectively, are derived by utilizing the fol-
lowing properties given by the graphical model:

xt+1|xt |= x0:t−1,y0:t & yt|xt |= x0:t−1,y0:t−1, (1)

where |= means statistical independence. In the reverse pro-
cess, the transition and emission probabilities, p(xt−1|xt)
and p(yt|xt), are set using the similar properties as

xt−1|xt |= xT :t+1,yT :t & yt|xt |= xT :t+1,yT :t+1. (2)

3.2. New surrogate objective

Using Eq. (1) and Bayes’ theorem, we derive the joint prob-
ability of the forward process as follows:

q(x1:T ,y0:T |x0) = q(xT |x0)

T∏
t=2

q(xt−1|xt,x0)

T∏
t=0

q(yt|xt).

(3)

From Eq. (2), the joint probability of the reverse process is
given by

p(xT :0,yT :0) = p(xT)

1∏
t=T

p(xt−1|xt)

0∏
t=T

p(yt|xt). (4)

Therefore, we derive the upper bound of the expected neg-
ative log-likelihood as

Ex0∼q [− log p(x0)] (5)

= Ex0∼q

[
logEx1:T ,y0:T∼q

q(x1:T ,y0:T |x0)

p(x0:T ,y0:T)

]
(6)

≤ Ex0∼qEx1:T ,y0:T∼q

[
log

q(x1:T ,y0:T |x0)

p(x0:T ,y0:T)

]
(7)

= Ex0:T ,y0:T∼q

[
log

q(xT |x0)
∏T

t=2 q(xt−1|xt,x0)

p(xT)
∏1

t=T p(xt−1|xt)

]

+ Ex0:T ,y0:T∼q

[
log

∏T
t=0 q(yt|xt)∏0
t=T p(yt|xt)

]
(8)

= DKL(q(xT |x0)||p(xT)) + Eq [− log p(x0|x1)]

+

T∑
t=2

DKL(q(xt−1|xt,x0)||p(xt−1|xt))

+

T∑
t=0

DKL(q(yt|xt)||p(yt|xt)). (9)

where the first inequality is derived by the Jensen’s inequal-
ity.

Transition probabilities From [7], the forward transition
probabilities are given by

q(x0) := Pdata(x0) and (10)

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI), (11)

where {βt}Tt=1 are predefined constants. The backward
transition probabilities are defined as

pθ(xT) := N (xT ;0, I) and (12)

pθ(xt−1|xt) := N
(
xt−1;

1√
1− βt

(xt + βtsθ(xt, t)), βtI

)
,

(13)

where sθ(·, ·) denotes a neural network parameterized by θ.
Due to the following equation,

q(xt−1|xt,x0) (14)

= N
(
xt−1;

1√
1− βt

(xt + βt∇ log q(xt|x0)), β̄tI

)
,

3

where ᾱt =
∏t

s=1(1 − βs) and β̄t = 1−ᾱt−1

1−ᾱt
βt, the first

three terms of Eq. (9) are optimized by the following loss
function:

T∑
t=1

λt||ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)||22 + C, (15)

where ϵθ(xt, t) =
sθ(xt, t)√
1− ᾱt

and C is a constant.

Emission probabilities We interpret the last term in
Eq. (9) as an observation about whether the state, xt, is on
the real data manifold or not. Then, the emission probabil-
ity of the forward and backward processes are defined by
Bernoulli distributions as

q(yt|xt) := Ber(1) & p(yt|xt) := Ber(D(f(xt))), (16)

where f(·) is an arbitrary function that projects an in-
put onto a known manifold and D(·) indicates the prob-
ability that an input belongs to the manifold of real data.
Hence, the KL-divergence of emission, i.e., the last term
of Eq. (9), is redefined via two different Bernoulli distribu-
tions in Eq. (16). Eventually, the KL-divergence between
two emission distributions is replaced by a log-likelihood
of the manifold embedding as follows:

T∑
t=0

DKL(q(yt|xt)||p(yt|xt)) =

T∑
t=0

− log(D(f(xt))).

(17)

3.3. Manifold embedding and likelihood function

We now discuss a technically feasible way to implement
Eq. (17). The only undecided components in Eq. (17) are
the projection function to a known manifold, f(·), and the
likelihood function, D(·). We define f(·) as a function pro-
jecting xt onto a manifold of xt−s ∼ qt−s (t ≥ s). With
the diffusion model, this can be done by running one dis-
cretization step of a numerical ODE solver from the noise
level of t to t− s, denoted by Φ(xt, t, s; θ). We implement
the projection function using the solver as follows:

fθ(xt) := x̂θ
t−s = Φ(xt, t, s; θ). (18)

Note that s is a sample drawn from a uniform distribution,
U(1,min(t, ⌊kT ⌋)), where k ∈ [0, 1] is the hyperparameter
that determines the lookahead range in the backward direc-
tion. We utilize a step of the Euler method1 or the Heun’s
method2 to realize the projection function.

In addition, we design D(·) as Dϕ(·)γ , a constant power
of a discriminator function, Dϕ(·), which distinguishes be-
tween projected data from 1) the prediction of the denois-
ing network and 2) real data. Such a design is motivated by

1Refer to Algorithm 1 in Appendix B.
2Refer to Algorithm 2 in Appendix B.

Figure 3. The role of the discriminator in our objective. θours

and θbase denote the denoising parameters learned by the pro-
posed method and the baseline, respectively. The proposed train-
ing method nudges the prediction of x̂θ

t−s closer to the exact state
space than the original.

the right-hand side of Eq. (17), which resembles the objec-
tive of the generator in non-saturating GAN [5]; we employ
a time-dependent discriminator taking the projected data, t
and s, as its inputs.

3.4. Training objectives

By reformulating the transition and emission probabilities
as discussed in Secs. 3.2 and 3.3, the first three terms of
Eq. (9) become identical to Eq. (15) while the last term is
set as −γ log(Dϕ(x̂

θ
t−s, t, s)). Therefore, the final train-

ing objective of the diffusion model with a network design
parametrized by θ is given by

min
θ

Ex0,ϵ,t,s

[
λt||ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)||22︸ ︷︷ ︸

Ltransition

− γ log(Dϕ(x̂
θ
t−s, t, s))︸ ︷︷ ︸

−Lemission

]
, (19)

where Dϕ(·) denotes a discriminator and γ is a hyperpa-
rameter.

Besides optimizing θ, we need to train Dϕ(·) to distin-
guish real data from the predictions of the diffusion model.
Following GANs [5], the training objective is given by

max
ϕ

Ex0,ϵ,t,s[log(Dϕ(xt−s, t, s))

+ log(1−Dϕ(x̂
θ
t−s, t, s))]. (20)

We perform an alternating optimization, where the two ob-
jective functions in Eqs. (19) and (20) take turns until con-
vergence.

For inference, the diffusion model ϵθ(·) is only taken into
account and the discriminator Dϕ(·) is not required. There-
fore, our approach incurs no extra computational overhead
for sample generations.

4

3.5. Analysis of the observation-induced loss

We further analyze the surrogate of the negative log-
likelihood of a generated sample and explain how the pro-
posed observation-induced loss affects the surrogate.

3.5.1 Negative log-likelihood at inference

The negative log-likelihood of a generated sample x0 ∼ pθ
is given by

Ex0∼pθ
[− log q(x0)] (21)

≤
N∑
2

DKL
(
pθ(xτi−1 |xτi)||q(xτi−1 |xτi)

)
+ Epθ

[q(xτ0 |xτ1)],

where τ0 = 0 < τ1 < · · · < τN = T is a subsequence of
time steps selected for fast sampling and x0 is sampled from
pθ unlike Eq. (5). Here, pθ(xτi−1

|xτi) is defined similarly
to Eq. (13) by replacing βt with β̃τi = 1− ᾱτi

ᾱτi−1
.

3.5.2 Approximation on true reverse distribution

While pθ(xτi−1
|xτi) takes the tractable form of a Gaussian

distribution, the true reverse distribution, q(xτi−1
|xτi), is

still infeasible for estimating the KL-divergence in the right-
hand side of Eq. (21). To simulate the true reverse density
function with β̃τi , we use a weighted geometric mean of its
asymptotic distributions corresponding to β̃τi ≈ 0 or 1.

For notational simplicity, let xτi−1
= u, xτt = v, and

β̃τi = β. Then, we denote the true reverse density function
as p(β)u|v(u|v), for u ∼ pu and v|u ∼ N (

√
1− βu, βI).

Lemma 1. For u ∼ pu and v|u ∼ N (
√
1− βu, βI),

we obtain the following two asymptotic distributions of
p
(β)
u|v(u|v):

p
(β)
u|v(u|v) ≈ N

(
u;

1√
1− β

(v + β∇ log pu(v)), βI

)
for 0 < β ≪ 1, (22)

lim
β→1−

p
(β)
u|v(u|v) = pu(u). (23)

Proof. Refer to Appendix A.3. ■

The weighted geometric mean of the two asymptotic dis-
tributions in Eqs. (22) and (23) is given by

q
(ξ)
u|v(u|v) (24)

:= Cξ N
(
u;

1√
1− β

(v + β∇ log pu(v)), βI

)1−ξ

pu(u)
ξ,

where Cξ is the normalization constant and ξ determines
the weight of each component. We further define a map-
ping function ξ(β) that minimizes the difference between

p
(β)
u|v(u|v) and q

(ξ)
u|v(u|v) as

ξ(β) := argmin
ξ∈[0,1]

∫ ∞

−∞

(
q
(ξ)
u|v(u|v)− p

(β)
u|v(u|v)

)2

du.

(25)

The existence of ξ(β) is clear under continuity of q(ξ)u|v(u|v)
with respect to ξ. For the rest of the analysis, we approxi-
mate p

(β)
u|v(u|v) by q

(ξ(β))
u|v (u|v); the validity of the approx-

imation is discussed in Appendix A.4 with more detailed
empirical study results. Finally, by substituting the vari-
ables back as u = xτi−1

, v = xτi , and β = β̃τi , the true
reverse density function is approximated by

q(xτi−1 |xτi) (26)

≈ Cξ(β̃τi
)N (xτi−1

;µτi , β̃τiI)
1−ξ(β̃τi

)q(xτi−1
)ξ(β̃τi

),

where µτi =
1√

1−β̃τi

(xτi + β̃τi∇ log q(xτi)).

3.5.3 Interpretation of Eq. (21)

By using Eq. (26), we factorize the KL-divergence term in
Eq. (21) into a sum of two KL-divergences as follows:

DKL(pθ(xτi−1
|xτi)||q(xτi−1

|xτi))

≈ (1− ξ(β̃τi))DKL(pθ(xτi−1 |xτi)||N (xτi−1 ;µτi , β̃τiI))

+ ξ(β̃τi)DKL(pθ(xτi−1
|xτi)||q(xτi−1

)) + logCξ(β̃τi
)

= (1− ξ(β̃τi))||sθ(xτi , τi)−∇ log q(xτi)||22
+ ξ(β̃τi)DKL(pθ(xτi−1

|xτi)||q(xτi−1
)) + C, (27)

where C is a constant.
While Ltransition in Eq. (19) minimizes the first term of

the last equation in Eq. (27), Lemission in Eq. (19) minimizes
the JS-divergence between two distributions [5]. Although
the JS-divergence has different properties from the KL-
divergence, both quantities are minimized when two dis-
tributions are equal; the minimization of the JS-divergence
effectively reduces the second term of Eq. (27) in practice.

Note that the vanilla diffusion models neglect the sec-
ond term of Eq. (27) while DDGAN [36] disregards the first
term of Eq. (27). On the contrary, the proposed method con-
siders both components, leading to effective optimization.
In practice, both ξ(β̃τi) and 1 − ξ(β̃τi) are expected to be
non-trivial in fast sampling with a relatively large value of
β̃τi . The behaviors of ξ(β̃τi) are demonstrated in Fig. 4 (a)
and (b) in Appendix A.4.

4. Experiments
This section first describes the evaluation protocol in this
work, and then presents quantitative and qualitative results
of OGDM in comparison to other baselines.

5

Table 1. FID and recall scores for various NFEs when the projection function fθ(·) aligns to the sampler as Euler method1. ‘EDM cond.’
denotes that the model is trained with class labels. ‘OGDM’ represents that the models are trained from scratch while ‘OGDM (ft)’
indicates that the models are fine-tuned from the pretrained baseline models.

NFEs 25 20 15 10

Dataset (Backbone) Method FID↓ Rec.↑ FID↓ Rec.↑ FID↓ Rec.↑ FID↓ Rec.↑

CIFAR-10 (ADM)
Baseline 7.08 0.583 8.05 0.582 9.93 0.567 15.20 0.527
OGDM 6.26 0.587 6.81 0.587 7.96 0.578 11.63 0.546
OGDM (ft) 6.69 0.582 7.26 0.581 8.15 0.571 11.18 0.549

CIFAR-10 (EDM) Baseline 5.32 0.572 6.82 0.558 10.02 0.524 19.32 0.452
OGDM (ft) 3.21 0.603 3.53 0.600 4.64 0.587 9.28 0.546

CIFAR-10 (EDM cond.) Baseline 4.95 0.567 6.23 0.546 8.81 0.514 15.57 0.434
OGDM (ft) 2.56 0.599 2.83 0.589 3.67 0.572 6.85 0.528

CelebA (ADM)
Baseline 7.20 0.441 7.88 0.429 9.34 0.392 11.92 0.315
OGDM 3.80 0.541 3.94 0.534 5.06 0.502 7.91 0.451
OGDM (ft) 4.61 0.576 4.61 0.571 4.80 0.552 7.04 0.504

LSUN Church (LDM) Baseline 7.87 0.443 8.40 0.434 8.83 0.399 15.02 0.326
OGDM (ft) 7.46 0.449 7.92 0.444 8.76 0.402 14.84 0.331

Table 2. FID and recall scores for various NFEs when the projection function fθ(·) aligns to the sampler as Heun’s method2. ‘OGDM (ft)’
indicates that the models are fine-tuned from the pretrained baseline models.

NFEs 35 25 19 15 11

Dataset (Backbone) Method FID↓ Rec.↑ FID↓ Rec.↑ FID↓ Rec.↑ FID↓ Rec.↑ FID↓ Rec.↑

CIFAR-10 (EDM) Baseline 2.07 0.618 2.19 0.616 2.73 0.616 4.48 0.604 14.71 0.536
OGDM (ft) 2.15 0.620 2.17 0.622 2.56 0.620 4.21 0.619 13.54 0.589

4.1. Evaluation protocol

The datasets, model architectures, and training and evalua-
tion methods are as follows.

Datasets We perform the unconditional image genera-
tion experiment on several standard benchmarks with di-
verse resolutions—CIFAR-10 [16] (32×32), CelebA [19]
(64×64) and LSUN Church [37] (256×256).

Architectures We apply our method to three strong base-
lines, ADM3 [3] on CIFAR-10 and CelebA, EDM4 [12] on
CIFAR-10, and LDM5 [25] on LSUN Church, using their
official source codes. For the implementation of the time-
dependent discriminator, we mostly follow the architecture
proposed in Diffusion-GAN [34], which is based on the im-
plementation of StyleGAN26 [11] while time indices are
injected into the discriminator as in the conditional GAN.
The only modification in our implementation is an addi-
tional time index, s in Eq. (18), which denotes the number
of lookahead time steps from the current time index, t.

3https://github.com/openai/guided-diffusion
4https://github.com/NVlabs/edm
5https://github.com/CompVis/latent-diffusion
6https://github.com/NVlabs/stylegan2-ada-pytorch

Training We use the default hyperparameters and opti-
mization settings provided by the official codes of base-
line algorithms for all experiments except for discrimina-
tor training. We consistently obtain favorable results with
k ∈ [0.1, 0.2] and γ ∈ [0.005, 0.025] across all datasets and
present our choices of the hyperparameters for reproducibil-
ity in Appendix C.

Evaluation We measure FID [6] and recall [17] using the
implementation provided by ADM3 for quantitative evalu-
ation. To compute FID, we use the full training data as a
reference set and 50K generated images as an evaluation
set. For the recall metric, we utilize 50K images for both
reference and generated sets.

4.2. Quantitative results

Tabs. 1 and 2 demonstrate quantitative comparison results
when projection functions fθ(·) aligns with samplers well.
They show that a proper combination of a projection func-
tion and a sampler substantially improves FID and recall in
all cases with NFEs ≤ 25. This observation implies that
the proposed method yields a robust denoising network for
large step sizes. Tab. 1 also compares performance between
our models trained from scratch and the ones fine-tuned on

6

Table 3. FID and recall scores for various NFEs when the projection function fθ(·) is a step of Euler method1 while two different
PNDM [18] algorithms are used as samplers. ‘EDM cond.’ denotes that the model is trained with class labels. ‘OGDM’ represents that the
models are trained from scratch while ‘OGDM (ft)’ indicates that the models are fine-tuned from the pretrained baseline models.

NFEs 25 20 15 10

Sampler Dataset (Backbone) Method FID↓ Rec.↑ FID↓ Rec.↑ FID↓ Rec.↑ FID↓ Rec.↑

S-PNDM

CIFAR-10 (ADM) Baseline 5.31 0.601 5.95 0.596 7.09 0.577 10.32 0.548
OGDM 5.03 0.611 5.09 0.605 5.58 0.601 7.54 0.582

CIFAR-10 (EDM) Baseline 2.74 0.604 3.21 0.597 4.48 0.586 9.51 0.531
OGDM (ft) 3.75 0.604 3.62 0.605 3.60 0.600 4.97 0.586

CIFAR-10 (EDM cond.) Baseline 2.50 0.606 2.87 0.599 3.76 0.584 6.63 0.544
OGDM (ft) 2.87 0.610 2.75 0.607 2.69 0.601 3.53 0.573

CelebA (ADM) Baseline 3.67 0.553 4.15 0.539 5.22 0.511 7.33 0.445
OGDM 2.62 0.607 2.70 0.604 2.96 0.585 4.35 0.545

LSUN Church (LDM) Baseline 8.41 0.470 8.21 0.471 8.07 0.475 9.14 0.464
OGDM (ft) 7.69 0.480 7.48 0.489 7.48 0.481 8.68 0.478

F-PNDM

CIFAR-10 (ADM) Baseline 5.17 0.609 6.19 0.600 10.55 0.535 – –
OGDM 5.40 0.609 6.72 0.600 8.84 0.557 – –

CelebA (ADM) Baseline 3.39 0.562 4.25 0.539 7.08 0.488 – –
OGDM 2.81 0.615 3.10 0.609 5.14 0.576 – –

LSUN Church (LDM) Baseline 9.04 0.474 9.10 0.483 12.75 0.493 – –
OGDM (ft) 8.24 0.481 8.39 0.495 11.78 0.505 – –

Table 4. Comparisons of FIDs with other methods on CIFAR-10 (32×32) and CelebA (64×64). ‘†’ means the values are copied from
other papers and ‘*’ means the values are obtained by applying DDIM [28] as a sampler.

CIFAR-10 CelebA

Method \ NFEs 25 20 15 10 25 20 15 10
DDIM [28] †* – 6.84 – 13.36 – 13.73 – 17.33
Analytic-DPM [2] †* 5.81 – – 14.00 9.22 – – 15.62
FastDPM [14] †* – 5.05 – 9.90 – 10.69 – 15.31
GENIE [4] † 3.64 3.94 4.49 5.28 – – – –
Watson et al. [35] † 4.25 4.72 5.90 7.86 – – – –
ADM [3] 7.08 8.05 9.93 15.20 7.20 7.88 9.34 11.92
EDM [12] 2.19 – 4.48 – – – – –
S-PNDM [18] 2.74 3.21 4.48 9.51 3.67 4.15 5.22 7.33
F-PNDM [18] 5.17 6.19 10.55 – 3.39 4.25 7.08 –
CT [30] 6.94 6.63 6.36 6.20 – – – –
OGDM 2.17 3.53 3.60 4.97 2.62 2.70 2.96 4.35

‘CIFAR-10 (ADM)’ and ‘CelebA (ADM)’. We observe that
the fine-tuned models exhibit competitive performance with
a small fraction (5–10%) of the training iterations when
compared to the models optimized through full training.
Detailed analysis and comparisons are provided in Tab. 6 of
Appendix C. These findings highlight the practicality and
computational efficiency of the proposed method.

Tab. 3 presents FID and recall scores in the case that
the projection function fθ(·) is a step of the Euler method
while the samplers are either S-PNDM or F-PNDM. Un-
less the projection function and the sampler align properly,
the benefit from our approach is not guaranteed because the

observations may be inaccurately projected onto the mani-
fold from the perspective of the sampler. Despite this rea-
sonable concern, both S-PNDM and F-PNDM still achieve
great performance gains especially when NFEs are small.
Notably, the combination of the proposed method and S-
PNDM shows consistent performance improvements; the
models with the Euler projection and S-PNDM harness syn-
ergy because the steps of S-PNDM are similar to the Eu-
ler method except for the initial step. Moreover, ‘CIFAR-
10 (EDM cond.)’ in Tabs. 1 and 3 shows that our method
is still effective for conditional sampling. We also present
results when stochastic sampling is employed, with our ap-

7

proach showing superior performance, in Appendix E.
Tab. 4 presents the FIDs of various algorithms combined

with fast inference techniques in a wide range of NFEs.
The results imply that the proposed approach is advanta-
geous when the number of time steps for inference is small.
We additionally compare our approach with other methods
that incorporate time-dependent discriminators to diffusion
process, i.e., DG [13] and DDGAN [36], in Section Ap-
pendix D.

4.3. Qualitative results

We discuss the qualitative results of our approach in the fol-
lowing two aspects.

Comparisons to baselines We provide qualitative results
on CIFAR-10, CelebA, and LSUN Church obtained by a
few sampling steps in comparison with the baseline meth-
ods in Appendix F. The baseline models often produce
blurry samples when utilizing fast inference methods. In
contrast, our models generate crispy and clear images as
well as show more diverse colors and tones compared to the
corresponding baselines. Moreover, as shown in the left-
hand side of Fig. 1, the baseline model generates face im-
ages with inconsistent genders by varying NFEs. On the
other hand, our model maintains the information accurately,
which is desirable results because we use deterministic gen-
erative process with the same initial point. This is because
the additional loss term of our method enables the model
to approximate each backward step more accurately, even
with coarse discretization.

Nearest neighborhoods Fig. 21 in Appendix F.5 illus-
trates the nearest neighbor examples in the training datasets
with respect to the generated images by our approach. Ac-
cording to the results, the generated samples are sufficiently
different from the training examples, confirming that our
models do not simply memorize data but increase scores
properly by improving diversity in output images.

4.4. Discussion on training cost

Regarding the trainig cost, our method increases the train-
ing time by approximately 80% compared to the baseline,
given the same number of iterations. This is primarily due
to the additional training cost incurred by the discriminator.
However, we can achieve promising results by fine-tuning
the pretrained baseline model for only a small number of
iterations, as shown in Tabs. 1 to 3, which significantly al-
leviate the burden of training the discriminator.

5. Future work
Although not explored in this work, there is more room
for amplifying the impact of the proposed approach. Using

OGDM as a pretrained score model for consistency distil-
lation [30] can be advantageous over using baseline mod-
els by enhancing the accuracy of one-step progress in the
teacher model. Moreover, integrating the lookahead vari-
able s as an additional input to diffusion models may fur-
ther improve performance. We can also construct a spe-
cialized denoising network for specific sampling steps by
focusing more on learning manifolds of noise levels corre-
sponding to the time steps to be used in sampling. This can
be realized by selecting s adaptively, rather than adopting a
uniform sampling. Moreover, considering that ξ(β) is pos-
itively correlated with β (see Fig. 4 (b) in Appendix A.4 of
the supplementary document), it would make sense to set
γ in proportion to 1 − ᾱt

ᾱt−s
. While we examine the obser-

vations following the Bernoulli distribution and implement
them using the discriminators as in GANs, it is important
to note that there are other options to define and implement
the observation factors. For example, other formulations of
the extended surrogate Eq. (9) can be explored, which may
include the ones specific to target tasks, available resources,
and measurement methods.

6. Conclusion
We presented a diffusion probabilistic model that introduces
observations into the Markov chain of [7]. As a feasible
and effective way, we have concretized the surrogate loss
for negative log-likelihood using observations following the
Bernoulli distribution, and integrated the adversarial train-
ing loss by adding a discriminator network that simulates
the observation. Our strategy regulates the denoising net-
work to minimize the accurate negative log-likelihood sur-
rogate at inference, thereby increasing robustness in a few
steps sampling. As a result, our method facilitates faster
inference by mitigating quality degradation. We demon-
strated the effectiveness of the proposed method on well-
known baseline models and multiple datasets.

Acknowledgements This work was partly supported by
LG AI Research, and the IITP grants [No. 2022-0-00959,
(Part 2) Few-Shot Learning of Causal Inference in Vision
and Language for Decision Making; No. 2021-0-02068, AI
Innovation Hub (AI Institute, Seoul National University);
No. 2021-0-01343, Artificial Intelligence Graduate School
Program (Seoul National University)] funded by the Korea
government (MSIT).

References
[1] Fan Bao, Chongxuan Li, Jiacheng Sun, Jun Zhu, and Bo

Zhang. Estimating the optimal covariance with imperfect
mean in diffusion probabilistic models. In ICML, 2022. 2

[2] Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-
DPM: An analytic estimate of the optimal reverse variance
in diffusion probabilistic models. In ICLR, 2022. 2, 7

8

[3] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat GANs on image synthesis. In NeurIPS, 2021. 1, 6, 7

[4] Tim Dockhorn, Arash Vahdat, and Karsten Kreis. GENIE:
Higher-order denoising diffusion solvers. In NeurIPS, 2022.
2, 7

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In NeurIPS,
2014. 2, 4, 5

[6] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In NeurIPS, 2017. 6

[7] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. In NeurIPS, 2020. 1, 2, 3, 8

[8] Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac,
and Max Welling. Equivariant diffusion for molecule gener-
ation in 3D. In ICML, 2022. 1

[9] Myeonghun Jeong, Hyeongju Kim, Sung Jun Cheon, By-
oung Jin Choi, and Nam Soo Kim. Diff-TTS: A denois-
ing diffusion model for text-to-speech. In INTERSPEECH,
2021. 1

[10] Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer,
Tal Kachman, and Ioannis Mitliagkas. Gotta go fast when
generating data with score-based models. arXiv preprint
arXiv:2105.14080, 2021. 2

[11] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Training generative adver-
sarial networks with limited data. In NeurIPS, 2020. 6

[12] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based generative
models. In NeurIPS, 2022. 2, 6, 7, 13

[13] Dongjun Kim, Yeongmin Kim, Wanmo Kang, and Il-Chul
Moon. Refining generative process with discriminator guid-
ance in score-based diffusion models. In ICML, 2023. 3, 8,
14

[14] Zhifeng Kong and Wei Ping. On fast sampling of diffusion
probabilistic models. In ICML Workshop on Invertible Neu-
ral Networks, Normalizing Flows, and Explicit Likelihood
Models, 2021. 7

[15] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and
Bryan Catanzaro. DiffWave: A versatile diffusion model for
audio synthesis. In ICLR, 2021. 1

[16] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. 2009. 6

[17] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko
Lehtinen, and Timo Aila. Improved precision and recall met-
ric for assessing generative models. 2019. 6

[18] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo
numerical methods for diffusion models on manifolds. In
ICLR, 2022. 2, 7

[19] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In ICCV, 2015.
6

[20] Eric Luhman and Troy Luhman. Knowledge distillation in
iterative generative models for improved sampling speed.
arXiv preprint arXiv:2101.02388, 2021. 3

[21] Shitong Luo and Wei Hu. Diffusion probabilistic models for
3D point cloud generation. In CVPR, 2021. 1

[22] Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik
Kingma, Stefano Ermon, Jonathan Ho, and Tim Salimans.
On distillation of guided diffusion models. In CVPR, 2023.
3

[23] Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In ICML, 2021. 2

[24] Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao,
Aditya Grover, and Stefano Ermon. Permutation invariant
graph generation via score-based generative modeling. In
AISTATS, 2020. 1

[25] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022. 1, 6

[26] Tim Salimans and Jonathan Ho. Progressive distillation for
fast sampling of diffusion models. In ICLR, 2022. 3

[27] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In ICML, 2015. 1, 2

[28] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In ICLR, 2021. 2, 7

[29] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equa-
tions. In ICLR, 2021. 2

[30] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya
Sutskever. Consistency models. In ICML, 2023. 3, 7, 8

[31] Endre Süli and David Mayers. An Introduction to Numerical
Analysis. Cambridge University Press, 1 edition, 2003. 2

[32] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception ar-
chitecture for computer vision. In CVPR, 2016. 31

[33] Sauer Timothy. Numerical Analysis. Pearson, 3 edition,
2017. 2

[34] Zhendong Wang, Huangjie Zheng, Pengcheng He, Weizhu
Chen, and Mingyuan Zhou. Diffusion-GAN: Training GANs
with diffusion. 2023. 3, 6

[35] Daniel Watson, William Chan, Jonathan Ho, and Moham-
mad Norouzi. Learning fast samplers for diffusion models
by differentiating through sample quality. In ICLR, 2022. 2,
7

[36] Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tack-
ling the generative learning trilemma with denoising diffu-
sion GANs. In ICLR, 2022. 3, 5, 8, 14

[37] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas
Funkhouser, and Jianxiong Xiao. LSUN: Construction of
a large-scale image dataset using deep learning with humans
in the loop. arXiv preprint arXiv:1506.03365, 2015. 6

[38] Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic,
Or Litany, Sanja Fidler, and Karsten Kreis. LION: Latent
point diffusion models for 3D shape generation. In NeurIPS,
2022. 1

9

Observation-Guided Diffusion Probabilistic Models
Supplementary Material

Appendix
A. Details of Sec. 3
A.1. Proof of Eq. (3)

q(x1:T ,y0:T |x0) = q(y0|x0)

T−1∏
t=0

q(xt+1|x0:t,y0:t)q(yt+1|x0:t+1,y0:t)

= q(y0|x0)

T−1∏
t=0

q(xt+1|xt)q(yt+1|xt+1) (∵ Eq. (1))

=

T∏
t=0

q(yt|xt)

T−1∏
t=0

q(xt+1|xt)

=

T∏
t=0

q(yt|xt)

[
q(x1|x0)

T−1∏
t=1

q(xt+1|xt,x0)

]
(∵ Eq. (1))

=

T∏
t=0

q(yt|xt)

[
q(x1|x0)

T−1∏
t=1

q(xt+1,xt|x0)

q(xt|x0)

]

=

T∏
t=0

q(yt|xt)

[
q(x1|x0)

T−1∏
t=1

q(xt+1|x0)q(xt|xt+1,x0)

q(xt|x0)

]

= q(xT |x0)

T∏
t=2

q(xt−1|xt,x0)

T∏
t=0

q(yt|xt).

A.2. Proof of Eq. (4)

p(xT :0,yT :0) = p(xT)p(yT |xT)

1∏
t=T

p(xt−1|xT :t,yT :t)p(yt−1|xT :t−1,yT :t)

= p(xT)p(yT |xT)

1∏
t=T

p(xt−1|xt)p(yt−1|xt−1) (∵ Eq. (1))

= p(xT)

1∏
t=T

p(xt−1|xt)

0∏
t=T

p(yt|xt).

A.3. Proof of Lemma 1

Lemma 1. For u ∼ pu and v|u ∼ N (
√
1− βu, βI), we obtain the following two asymptotic distributions of p(β)u|v(u|v):

p
(β)
u|v(u|v) ≈ N

(
u;

1√
1− β

(v + β∇ log pu(v)), βI

)
for 0 < β ≪ 1, (22)

lim
β→1−

p
(β)
u|v(u|v) = pu(u). (23)

Proof of Eq. (22). Let u′ =
√
1− βu. Then,

pv|u′(v|u′) = N (v;u′, βI) = (2πβ)−d/2 exp(− 1

2β
||v − u′||2) = N (u′;v, βI) = qu′|v(u

′|v).

10

By talyor expansion of pu′(u′) at v,

pu′(u′) = pu′(v)+ < ∇pu′(v),u′ − v > +O(||u′ − v||2).

Then, ∫
qu′|v(u

′|v)pu′(u′)du′ = Eu′∼N (v,βI)[pu′(v)+ < ∇pu′(v),u′ − v > +O(||u′ − v||2)]

= pu′(v) +O(β).

By Bayes’ rule and above result,

pu′|v(u
′|v) =

pv|u′(v|u′)pu′(u′)∫
pv|u′(v|u′)pu′(u′)du′

=
qu′|v(u

′|v)pu′(u′)∫
qu′|v(u′|v)pu′(u′)du′

= qu′|v(u
′|v)

pu′(v)+ < ∇pu′(v),u′ − v > +O(||u′ − v||2)
pu′(v) +O(β)

= qu′|v(u
′|v)(1+ <

∇pu′(v)

pu′(v)
,u′ − v > +O(||u′ − v||2))(1 +O(β))

= qu′|v(u
′|v) exp(< ∇ log pu′(v),u′ − v >) +O(β)

= (2πβ)−d/2 exp(− 1

2β
||v − u′||2) exp(< ∇ log pu′(v),u′ − v >) +O(β)

= (2πβ)−d/2 exp(− 1

2β
(||v − u′||2 − 2β < ∇ log pu′(v),u′ − v >)) +O(β)

= (2πβ)−d/2 exp(− 1

2β
||u′ − v − β∇ log pu′(v)||2 +O(β)) +O(β)

≈ N (u′;v + β∇ log pu′(v), βI) for β ≪ 1.

From u′ =
√
1− βu,

pu|v(u|v) = N (u;
1√

1− β
(v + β∇ log pu(v)),

β

1− β
I)

≈ N (u;
1√

1− β
(v + β∇ log pu(v)), βI) for β ≪ 1 ■

Proof of Eq. (23).

lim
β→1−

pv|u(v|u) = lim
β→1−

(2πβ)−d/2 exp(− 1

2β
||v −

√
1− βu||2)

= (2π)−d/2 exp(−1

2
||v||2) := f(v).

From Bayes’ rule and above results,

∴ lim
β→1−

pu|v(u|v) = lim
β→1−

pv|u(v|u)pu(u)∫
pv|u(v|u)pu(u)du

=
limβ→1− pv|u(v|u)pu(u)∫
limβ→1− pv|u(v|u)pu(u)du

=
f(v)pu(u)∫
f(v)pu(u)du

=
pu(u)∫
pu(u)du

= pu(u) ■

11

A.4. Behaviors of p(β)u|v(u|v), q
(ξ)
u|v(u|v), and ξ(β)

In this section, we justify the approximation on the density function of reverse distribution by showing behaviors of
p
(β)
u|v(u|v), q

(ξ)
u|v(u|v), and ξ(β) on toy examples.

Followings are the definitions in Sec. 3.5. For u ∼ pu and v|u ∼ N (
√
1− βu, βI), p(β)u|v(u|v) is a real backward density

function,

q
(ξ)
u|v(u|v) = C(N (u;

1√
1− β

(v + β∇ log pu(v)), βI))
1−ξp(u)ξ,

and

ξ(β) ∈ argmin
ξ∈[0,1]

∫ ∞

−∞
(q

(ξ)
u|v(u|v)− p

(β)
u|v(u|v))

2du.

For arbitrary µ > 0, let

pu(u) =
1

2
(N (u;µ, 1) +N (u;−µ, 1))

=
1

2
(2π)−1/2(exp(−(u− µ)2/2) + exp(−(u+ µ)2/2)).

Then, N (u; 1√
1−β

(v + β∇ log pu(v)), β), and p
(β)
u|v(u|v) =

pv|u(v|u)pu(u)∫
pv|u(v|u)pu(u)du

can be explicitly expressed. More-

over, q(ξ)u|v(u|v) can be calculated numerically. Therefore, we can numerically calculate ℓ2-norm between p
(β)
u|v(u|v) and

q
(ξ)
u|v(u|v). Finally, we can obtain ξ(β) for each v and β.

(a) (b) (c)

Figure 4. Simulations when µ = 2. (a) ℓ2-norm between p
(β)

u|v(u|v), and q
(ξ)

u|v(u|v) with respect to ξ when v = 0.1. (b) The graph of
ξ(β) with respect to β for various v. (c) Pdfs of four distributions when v = 0.1, β = 0.4, and ξ = ξ(β) = 0.55.

Fig. 4(a) shows the that q
(ξ(β))
u|v (u|v) better approximates p

(β)
u|v(u|v) than q

(1)
u|v(u|v) = pu(u) and q

(0)
u|v(u|v) =

N (u; 1√
1−β

(v + β∇ log pu(v)), β). We can observe that 0 < ξ(β) < 1 for ∀β ∈ (0, 1) from Fig. 4(b). In Fig. 4(c),
the black line is the precise reverse distribution while the blue line is asymptotic function when β → 0+ and the green line is
the limit when β → 1−. Note that the blue line is the approximation used in vanilla diffusion models. The red line which is
a normalized weighted geometric mean of blue and green lines better approximates the real distribution.

12

B. Numerical ODE solvers
Given discretization steps of T = tN > tk−1 > · · · > t0 = 0, Algorithms 1 and 2 caculate the numerical solution at t = 0
with initial condition xT for the following ODE:

dxt = f(xt, t)dt. (28)

Algorithm 1: Euler Method

for i = N, · · · , 1 do
xti−1

= xti + (ti−1 − ti)f(xti , ti)
end
return x0

Algorithm 2: Heun’s Method

for i = N, · · · , 1 do
xti−1 = xti + (ti−1 − ti)f(xti , ti)
if i > 1 then

xti−1
= xti + (ti−1 − ti)(

1
2f(xti , ti) +

1
2f(xti−1

, ti−1))
end

end
return x0

C. Hyperparameters for experiments

Table 5. Hyperparameters for Training

Dataset Backbone Training Projection k γ Batch size Seen Images

CIFAR-10

ADM
Baseline – – – 128 38M
OGDM Euler 0.1 0.01 128 38M
OGDM (ft) Euler 0.2 0.025 128 2M

EDM
Baseline – – – 512 200M
OGDM (ft) Euler 0.2 0.025 512 20M
OGDM (ft) Heun’s 0.2 0.005 512 20M

CelebA ADM
Baseline – – – 128 38M
OGDM Euler 0.1 0.01 128 38M
OGDM (ft) Euler 0.2 0.025 128 2M

LSUN Church LDM Baseline – – – 96 48M
OGDM (ft) Euler 0.1 0.01 96 1.5M

Table 6. Hyperparameters for sampling

Dataset Backbone Sampler Discretization

CIFAR-10

ADM
Euler quadratic

S-PNDM linear
F-PNDM linear

EDM
Euler default of [12]

Heun’s default of [12]
S-PNDM default of [12]

CelebA ADM
Euler linear

S-PNDM linear
F-PNDM linear

LSUN Church LDM
Euler linear

S-PNDM quadratic
F-PNDM quadratic

13

D. Comparisons with DG and DDGAN
In this section, we compare OGDM with DG [13] and DDGAN [36]; they adopt time-dependent discriminators in either
training or inference.

D.1. Comparison with DG

Table 7. FID and recall scores of two samplers: Heun’s method, DG sampler. Two samplers are applied to vanilla diffusion models and
OGDM for variuos discretization steps. For each step, diffusion models are evaluated twice and the gradient of a discriminator is calculated
once for DG sampler. The time to calculate the gradient of the discriminator requires about 180% time of evaluating the diffusion models,
but it is regarded as NFEs = 1 in the table. The number of steps (n) are chosen by argminn 3n− 2 ≥ (35, 25, 20, 15).

steps (n) 13 9 8 6

Dataset (Backbone) Method FID↓ Rec.↑ FID↓ Rec.↑ FID↓ Rec.↑ FID↓ Rec.↑ NFEs

CIFAR-10 (EDM)

Baseline 2.19 0.616 3.33 0.615 4.48 0.604 15.69 0.535 2n− 1
Baseline + DG [13] 1.99 0.630 4.62 0.613 7.39 0.586 24.78 0.465 3n− 2
OGDM (ft) 2.17 0.622 2.99 0.622 4.21 0.619 13.59 0.591 2n− 1
OGDM (ft) + DG [13] 2.00 0.633 3.58 0.624 5.77 0.616 19.25 0.560 3n− 2

DG utilizes discriminator to improve the sample quality without taking sampling efficiency into account. Tab. 7 demon-
strates quantitative comparison results between DG and OGDM. DG does not work well for fast sampling, rather it deteri-
orates the sample quality of a few-step-sampler. Moreover, DG requires more computational cost for each update since it
incorporates gradient calculation.

D.2. Comparison with DDGAN

Table 8. FID and recall scores of DDGAN [36] and OGDM on CIFAR-10. ‘†’ means the values are copied from the literature.

NFEs 20 8 4 2 1

Method FID↓ Rec.↑ FID↓ Rec.↑ FID↓ Rec.↑ FID↓ Rec.↑ FID↓ Rec.↑
DDGAN [36]† – – 4.36 0.56 3.75 0.57 4.08 0.54 14.60 0.19
OGDM 3.53 0.60 6.16 0.58 – – – – – –

DDGAN parametrizes the reverse distribution by neural network without Gaussian assumption. Its objective is not log-
likelihood driven and therefore it is more a variant of GANs rather than a diffusion model. Tab. 8 displays quantitative
comparison results between DDGAN and OGDM. OGDM achieves better FID and recall scores although DDGAN requires
fewer steps. Note that the performance of DDGAN peaks at NFEs = 4 and then drops as the number of time steps increases,
which limits the improvement of the model at the expense of increased sampling cost. Moreover, the low recall scores of
DDGAN imply it may share the limitations of GANs such as low diversity and mode collapse. Also, DDGAN does not
support deterministic sampling which makes it hard to solve problems such as inversion.

E. Stochastic sampling

Table 9. FID and recall scores for various NFEs of stochastic sampler where the projection function is Euler method1.

NFEs 50 20 10

Dataset (Backbone) Method FID↓ Rec.↑ FID↓ Rec.↑ FID↓ Rec.↑

CIFAR-10 (ADM) Baseline 14.28 0.491 25.42 0.388 44.37 0.278
OGDM 9.94 0.524 16.84 0.450 29.70 0.359

CelebA (ADM) Baseline 13.51 0.312 21.00 0.181 31.09 0.079
OGDM 9.62 0.400 15.74 0.277 24.22 0.158

Tab. 9 presents the quantitative results of stochastic sampling when the projection function is a step of Euler method. We
observe that the FID and recall are improved for all cases.

14

F. Qualitative comparisons
We compare the generated images between the baseline and our method using few number of NFEs in Figs. 5 to 20. While
we use Euler method and PNDM for sampling in common, for CIFAR-10, we further compare the results on EDM backbone
sampled by Heun’s method. The images generated by our method have more vivid color and clearer and less prone to produce
unrealistic samples compared to the baselines. Also, our method complements advanced samplers, other than Euler method,
effectively. In addition, Fig. 21 in Appendix F.5 illustrates the nearest neighbor examples of our generated examples in
training data of CelebA and LSUN Church.

F.1. CIFAR-10 samples with ADM baseline

Baseline + Euler method (NFEs=10) OGDM + Euler method (NFEs=10)
(FID: 15.20, recall: 0.527) (FID: 11.18, recall: 0.549)

Baseline + S-PNDM (NFEs= 10) OGDM + S-PNDM (NFEs= 10)
(FID: 10.32, recall: 0.548) (FID: 7.54, recall: 0.582)

Figure 5. Qualitative results on CIFAR-10 dataset with the ADM backbone using Euler method (top) and S-PNDM (bottom) with NFEs=10.

15

Baseline + Euler method (NFEs=15) OGDM + Euler method (NFEs=15)
(FID: 9.93, recall: 0.567) (FID: 7.96, recall: 0.578)

Baseline + S-PNDM (NFEs= 15) OGDM + S-PNDM (NFEs= 15)
(FID: 7.09, recall: 0.577) (FID: 5.58, recall: 0.601)

Figure 6. Qualitative results on CIFAR-10 dataset with the ADM backbone using Euler method (top) and S-PNDM (bottom) with NFEs=15.

16

Baseline + Euler method (NFEs=20) OGDM + Euler method (NFEs=20)
(FID: 8.05, recall: 0.582) (FID: 6.81, recall: 0.587)

Baseline + S-PNDM (NFEs= 20) OGDM + S-PNDM (NFEs= 20)
(FID: 5.95, recall: 0.596) (FID: 5.09, recall: 0.605)

Figure 7. Qualitative results on CIFAR-10 dataset with the ADM backbone using Euler method (top) and S-PNDM (bottom) with NFEs=20.

17

Baseline + Euler method (NFEs=25) OGDM + Euler method (NFEs=25)
(FID: 7.08, recall: 0.583) (FID: 6.26, recall: 0.587)

Baseline + S-PNDM (NFEs= 25) OGDM + S-PNDM (NFEs= 25)
(FID: 5.31, recall: 0.601) (FID: 5.03, recall: 0.611)

Figure 8. Qualitative results on CIFAR-10 dataset with the ADM backbone using Euler method (top) and S-PNDM (bottom) with NFEs=25.

18

F.2. CIFAR-10 samples with EDM baseline

Baseline + Euler method (NFEs=10) OGDM + Euler method (NFEs=10)
(FID: 19.32, recall: 0.452) (FID: 9.28, recall: 0.546)

Baseline + S-PNDM (NFEs=10) OGDM + S-PNDM (NFEs=10)
(FID: 9.51, recall: 0.531) (FID: 4.97, recall: 0.586)

Figure 9. Qualitative results on CIFAR-10 dataset with the EDM backbone using Euler method (top), and S-PNDM (bottom) with
NFEs=10.

19

Baseline + Euler method (NFEs=15) OGDM + Euler method (NFEs=15)
(FID: 10.02, recall: 0.524) (FID: 4.64, recall: 0.578)

Baseline + S-PNDM (NFEs=15) OGDM + S-PNDM (NFEs=15)
(FID: 4.48, recall: 0.586) (FID: 3.60, recall: 0.600)

Baseline + Heun’s method (NFEs=15) OGDM + Heun’s method (NFEs=15)
(FID: 4.48, recall: 0.604) (FID: 4.21, recall: 0.619)

Figure 10. Qualitative results on CIFAR-10 dataset with the EDM backbone using Euler method (top), S-PNDM (middle) and Heun’s
method (bottom) with NFEs=15.

20

Baseline + Euler method (NFEs=20) OGDM + Euler method (NFEs=20)
(FID: 6.82, recall: 0.558) (FID: 3.53, recall: 0.600)

Baseline + S-PNDM (NFEs=20) OGDM + S-PNDM (NFEs=20)
(FID: 3.21, recall: 0.597) (FID: 3.62, recall: 0.605)

Figure 11. Qualitative results on CIFAR-10 dataset with the EDM backbone using Euler method (top), and S-PNDM (bottom) with
NFEs=20.

21

Baseline + Euler method (NFEs=25) OGDM + Euler method (NFEs=25)
(FID: 5.32, recall: 0.572) (FID: 3.21, recall: 0.603)

Baseline + S-PNDM (NFEs=25) OGDM + S-PNDM (NFEs=25)
(FID: 2.74, recall: 0.604) (FID: 3.75, recall: 0.604)

Baseline + Heun’s method (NFEs=25) OGDM + Heun’s method (NFEs=25)
(FID: 2.19, recall: 0.616) (FID: 2.17, recall: 0.622)

Figure 12. Qualitative results on CIFAR-10 dataset with the EDM backbone using Euler method (top), S-PNDM (middle) and Heun’s
method (bottom) with NFEs=25.

22

F.3. CelebA samples with ADM baseline

Baseline + Euler method (NFEs=10) OGDM + Euler method (NFEs=10)
(FID: 11.92, recall: 0.315) (FID: 7.04, recall: 0.504)

Baseline + S-PNDM (NFEs=10) OGDM + S-PNDM (NFEs=10)
(FID: 7.33, recall: 0.445) (FID: 4.35, recall: 0.545)

Figure 13. Qualitative results on CelebA dataset with the ADM backbone using Euler method (top) and S-PNDM (bottom) with NFEs=10.

23

Baseline + Euler method (NFEs=15) OGDM + Euler method (NFEs=15)
(FID: 9.34, recall: 0.392) (FID: 4.80, recall: 0.552)

Baseline + S-PNDM (NFEs=15) OGDM + S-PNDM (NFEs=15)
(FID: 5.22, recall: 0.511) (FID: 2.96, recall: 0.585)

Figure 14. Qualitative results on CelebA dataset with the ADM backbone using Euler method (top) and S-PNDM (bottom) with NFEs=15.

24

Baseline + Euler method (NFEs=20) OGDM + Euler method (NFEs=20)
(FID: 7.88, recall: 0.429) (FID: 3.94, recall: 0.534)

Baseline + S-PNDM (NFEs=20) OGDM + S-PNDM (NFEs=20)
(FID: 4.15, recall: 0.540) (FID: 2.70, recall: 0.604)

Figure 15. Qualitative results on CelebA dataset with the ADM backbone using Euler method (top) and S-PNDM (bottom) with NFEs=20.

25

Baseline + Euler method (NFEs=25) OGDM + Euler method (NFEs=25)
(FID: 7.20, recall: 0.441) (FID: 3.80, recall: 0.541)

Baseline + S-PNDM (NFEs=25) OGDM + S-PNDM (NFEs=25)
(FID: 3.67, recall: 0.553) (FID: 2.62, recall: 0.607)

Figure 16. Qualitative results on CelebA dataset with the ADM backbone using Euler method (top) and S-PNDM (bottom) with NFEs=25.

26

F.4. LSUN Church samples with LDM baseline

Baseline + Euler method (NFEs=10) OGDM + Euler method (NFEs=10)
(FID: 15.02, recall: 0.326) (FID: 14.84, recall: 0.331)

Baseline + S-PNDM (NFEs= 10) OGDM + S-PNDM (NFEs= 10)
(FID: 9.14, recall: 0.464) (FID: 8.68, recall: 0.478)

Figure 17. Qualitative results on LSUN Church dataset with the LDM backbone using Euler method (top) and S-PNDM (bottom) with
NFEs=10.

27

Baseline + Euler method (NFEs=15) OGDM + Euler method (NFEs=15)
(FID: 8.83, recall: 0.399) (FID: 8.76, recall: 0.402)

Baseline + S-PNDM (NFEs= 15) OGDM + S-PNDM (NFEs= 15)
(FID: 8.07, recall: 0.475) (FID: 7.48, recall: 0.481)

Baseline + F-PNDM (NFEs= 15) OGDM + F-PNDM (NFEs= 15)
(FID: 12.75, recall: 0.493) (FID: 11.78, recall: 0.505)

Figure 18. Qualitative results on LSUN Church dataset with the LDM backbone using Euler method (top), S-PNDM (middle) and F-PNDM
(bottom) with NFEs=15.

28

Baseline + Euler method (NFEs=20) OGDM + Euler method (NFEs=20)
(FID: 8.40, recall: 0.434) (FID: 7.92, recall: 0.444)

Baseline + S-PNDM (NFEs= 20) OGDM + S-PNDM (NFEs= 20)
(FID: 8.21, recall: 0.471) (FID: 7.48, recall: 0.489)

Baseline + F-PNDM (NFEs= 20) OGDM + F-PNDM (NFEs= 20)
(FID: 9.10, recall: 0.483) (FID: 8.39, recall: 0.495)

Figure 19. Qualitative results on LSUN Church dataset with the LDM backbone using Euler method (top), S-PNDM (middle) and F-PNDM
(bottom) with NFEs=20.

29

Baseline + Euler method (NFEs=25) OGDM + Euler method (NFEs=25)
(FID: 7.87, recall: 0.443) (FID: 7.46, recall: 0.449)

Baseline + S-PNDM (NFEs= 25) OGDM + S-PNDM (NFEs= 25)
(FID: 8.41, recall: 0.470) (FID: 7.69, recall: 0.480)

Baseline + F-PNDM (NFEs= 25) OGDM + F-PNDM (NFEs= 25)
(FID: 9.04, recall: 0.474) (FID: 8.24, recall: 0.481)

Figure 20. Qualitative results on LSUN Church dataset with the LDM backbone using Euler method (top), S-PNDM (middle) and F-PNDM
(bottom) with NFEs=25.

30

F.5. Nearest neighborhoods

CelebA LSUN Church

Figure 21. Nearest neighborhoods of generated samples from CelebA and LSUN Church datasets. The top row showcases our generated
samples using Euler method with NFEs = 50, while the remaining three rows display the nearest neighborhoods from each training dataset.
The distances are measured in the Inception-v3 [32] feature space.

31

	. Introduction
	. Related Work
	. Observation-Guided Diffusion Probabilistic Models
	. Properties
	. New surrogate objective
	. Manifold embedding and likelihood function
	. Training objectives
	. Analysis of the observation-induced loss
	Negative log-likelihood at inference
	Approximation on true reverse distribution
	Interpretation of eq:nllsample

	. Experiments
	. Evaluation protocol
	. Quantitative results
	. Qualitative results
	. Discussion on training cost

	. Future work
	. Conclusion
	. Details of sec:formulation
	. Proof of eq:forward
	. Proof of eq:backward
	. Proof of lemma1
	. Behaviors of pu|v()(u|v), qu|v()(u|v), and ()

	. Numerical ODE solvers
	. Hyperparameters for experiments
	. Comparisons with DG and DDGAN
	. Comparison with DG
	. Comparison with DDGAN

	. Stochastic sampling
	. Qualitative comparisons
	. CIFAR-10 samples with ADM baseline
	. CIFAR-10 samples with EDM baseline
	. CelebA samples with ADM baseline
	. LSUN Church samples with LDM baseline
	. Nearest neighborhoods

