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(a) "A spectacular fireworks display over Sydney Harbour, 4K, high resolution."

(b) "An astronaut walking on the moon’s surface, high-quality, 4K resolution."

(c) "A colony of penguins waddling on an Antarctic ice sheet, 4K, ultra HD."

Figure 1: Illustration of 10K-frame long videos generated by FIFO-Diffusion based on a pretrained
text-conditional video generation model, VideoCrafter2 [3]. The number at the top-left corner of
each image indicates the frame index. The results clearly show that FIFO-Diffusion can generate
extremely long videos effectively based on the model trained on short clips (16 frames) without
quality degradation while preserving the dynamics and semantics of scenes.

Abstract
We propose a novel inference technique based on a pretrained diffusion model for
text-conditional video generation. Our approach, called FIFO-Diffusion, is concep-
tually capable of generating infinitely long videos without additional training. This
is achieved by iteratively performing diagonal denoising, which simultaneously
processes a series of consecutive frames with increasing noise levels in a queue;
our method dequeues a fully denoised frame at the head while enqueuing a new
random noise frame at the tail. However, diagonal denoising is a double-edged
sword as the frames near the tail can take advantage of cleaner frames by forward
reference but such a strategy induces the discrepancy between training and infer-
ence. Hence, we introduce latent partitioning to reduce the training-inference gap
and lookahead denoising to leverage the benefit of forward referencing. Practically,
FIFO-Diffusion consumes a constant amount of memory regardless of the target
video length given a baseline model, while well-suited for parallel inference on
multiple GPUs. We have demonstrated the promising results and effectiveness of
the proposed methods on existing text-to-video generation baselines. Generated
video examples and source codes are available at our project page1.

*indicates equal contribution.
1https://jjihwan.github.io/projects/FIFO-Diffusion.
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1 Introduction
Diffusion probabilistic models have achieved remarkable success in generating high-quality images [8,
25, 5, 18]. On top of the success in the image domain, there has been rapid progress in the generation
of videos [9, 22, 37, 31]. Despite the progress, long video generation still lags behind compared to
image generation. One reason is that video diffusion models (VDMs) often consider a video as a single
4D tensor with an additional axis corresponding to time, which prevents the models from generating
videos at scale. An intuitive approach to generating a long video is autoregressive generation, which
iteratively predicts a future frame given the previous ones. However, in contrast to the transformer-
based models [10, 28], diffusion-based models cannot directly adopt the autoregressive generation
strategy due to the heavy computational costs incurred by iterative denoising steps for a single frame
generation. Instead, several recent works [9, 7, 29, 12, 4, 1] adopt a chunked autoregressive generation
strategy, which predicts several frames in parallel conditioned on few preceding ones, consequently
reducing computational burden. While these approaches are computationally tractable, they often
leads to temporal inconsistency and discontinuous motion, especially between the chunks predicted
separately, because the model captures a limited temporal context available in the last few—only one
or two in practice—frames.
To address the limitation, we propose a novel inference technique, FIFO-Diffusion, which realizes
arbitrarily long video generation without training based on a pretrained video generation model
for short clips. Our approach effectively alleviates the limitations of the chunked autoregressive
method by enabling every frame to refer to a sufficient number of preceding frames. Our approach
generates frames through diagonal denoising (Section 3.1) in a first-in-first-out manner using a queue,
which contains a sequence of frames with different—monotonically increasing—noise levels over
time. At each step, a completely denoised frame at the head is popped out from the queue while a
new random noise image is pushed back at the tail. Diagonal denoising offers both advantage and
disadvantage; noisier frames benefit from referring to cleaner ones while the model may suffer from
training-inference gap because video models are generally trained to denoise frames with the same
noise level. To overcome this trade-off and embrace the advantage of diagonal denoising, we propose
latent partitioning (Section 3.2) and lookahead denoising (Section 3.3). Latent partitioning reduces
training-inference gap by narrowing the range of noise levels in to-be-denoised frames and enables
inference with finer steps. Lookahead denoising allows to-be-denoised frames to reference cleaner
frames, thereby performing more accurate noise prediction. Furthermore, both latent partitioning and
lookahead denoising offer parallelizability on multiple GPUs.

Our main contributions are summarized below.
• We propose FIFO-Diffusion through diagonal denoising, which is a training-free video

generation technique for VDMs pretrained on short clips. Our approach denoises images
with different noise levels for seamless video generation, enabling us to generate arbitrarily
long videos.

• We introduce latent partitioning and lookahead denoising, which respectively reduce the
training-inference gap incurred by diagonal denoising and allow the reference to less noisy
frames for denoising, improving generation quality.

• FIFO-Diffusion requires a constant amount of memory regardless of the length of the
generated videos given a baseline model. It is straightforward to run FIFO-Diffusion in
parallel on multiple GPUs.

• Our experiments on four strong baselines, based on the U-Net [19] or DiT [16] architectures,
show that FIFO-Diffusion generates extremely long videos including natural motion without
degradation on quality over time.

2 Text-to-Video Diffusion Models
We summarize the basic idea of text-conditional video generation techniques based on diffusion
models. They consist of a few key components: an encoder Enc(·), a decoder Dec(·), and a noise
prediction network ϵθ(·). They learn the distribution of videos corresponding to text conditions, and
the video is denoted by v ∈ Rf×H×W×3, where f is the number of frames and H ×W indicates
the image resolution. The encoder projects each frame onto the latent image space and the decoder
reconstructs the frame from the latent. A video latent z0 = Enc(v) = [z1

0 ;...; z
f
0 ] ∈ Rf×h×w×c

is obtained by concatenating projected frames and the latent diffusion model is trained to denoise
its perturbed version, zt. For noise ϵ ∼ N (0, I), a diffusion time step t ∼ U([1,..., T ]), and a text
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Figure 2: Illustration of diagonal denoising with f = 4. The frames surrounded by solid lines are
model inputs while frames surrounded by dotted line are their denoised version. After denoising, the
fully denoised instance at the top-right corner is dequeued while random noise is enqueued.

condition c, the model is trained to minimize the following loss:

Ev,ϵ,t [||ϵθ(zt; c, t)− ϵ||] , (1)

where the perturbed latent, zt = stz0 + σtϵ, is obtained using predefined constants {st}Tt=0 and
{σt}Tt=0, with the constraints s0 = 1, σ0 = 0 and σT /sT ≫ 1.
Following a time step schedule, 0 = τ0 < τ1 < ... < τS = T , initialized by a diffusion scheduler,
the model generates a video by iteratively denoising [z1

τS ;...; z
f
τS ] ∼ N (0, I) over S steps using a

sampler Φ(·) such as the DDIM sampler. Each denoising step is expressed as

[z1
τt−1

;...; zf
τt−1

] = Φ([z1
τt ;...; z

f
τt ], [τt;...; τt], c; ϵθ), (2)

where zi
τt denotes the latent of the ith frame at time step τt.

3 FIFO-Diffusion
This section discusses how FIFO-Diffusion generates long videos consisting of N frames using a
pretrained model only for f frames (f ≪ N ). The proposed approach iteratively employs diagonal
denoising (Section 3.1) over a predefined number of frames with different levels of noise. Our method
also incorporates latent partitioning (Section 3.2) and lookahead denoising (Section 3.3) to improve
the output quality of FIFO-Diffusion based on diagonal denoising.

3.1 Diagonal denoising
Diagonal denoising processes a series of consecutive frames with increasing noise levels as depicted
in Figure 2. To be specific, for a time step schedule 0 = τ0 < τ1 < ... < τf = T , each denoising step
is defined as

[z1
τ0 ;...; z

f
τf−1

] = Φ([z1
τ1 ;...; z

f
τf
], [τ1;...; τf ], c; ϵθ). (3)

Note that the latents along the diagonal, [z1
τ1 ;...; z

f
τf
], are stored in a queue, Q, and diagonal denoising

jointly considers the latents with different noise levels of [τ1;...; τf ], in contrast to the standard method
specified in Equation (2). Algorithm 1 in Appendix C illustrates how diagonal denoising in FIFO-
Diffusion works. After each denoising step with [z1

τ1 ;...; z
f
τf
], the foremost frame is dequeued as it

arrives at the noise level τ0 = 0, and the new latent at noise level τf is enqueued. As a result, the
model generates frames in a first-in-first-out manner.
Additionally, the initial diagonal latents [z1

τ1 ;...; z
f
τf
] to initiate the diagonal denoising can be gener-

ated from f random noises at time step τf , similar to the the process described above. Notably, our
approach does not require pregenerated videos or additional training for the initial latent construction.
The detailed algorithm is presented in Algorithm 2 in Appendix C.
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(a) Chunked autoregressive (b) FIFO-Diffusion

Figure 3: Comparison between the chunked autoregressive methods and FIFO-Diffusion proposed
for long video generation. The random noises (black) are iteratively denoised to image latents (white)
by the models. The red boxes indicate the denoising network in the pretrained base model while the
green boxes denote the prediction network obtained by additional training.

FIFO-Diffusion takes f frames as input, regardless of the target video length, and generates an
arbitrary number of frames by producing one frame per iteration using a sliding window approach.
Note that generating N (≫ f) frames for a video requires O(f) memory in each step (see Table 2),
which is independent of N .
Diagonal denoising allows us to generate consistent videos by sequentially propagating context
to later frames. Figure 3 illustrates the conceptual difference between chunked autoregressive
methods [9, 7, 29, 12, 4, 1] and FIFO-Diffusion. The former often struggles to maintain long-term
context across chunks since their conditioning—only the last generated frame—lacks contextual
information propagated from previous frames. In contrast, diagonal denoising progresses through the
frame sequence with a stride of 1, allowing each frame to reference a sufficient number of preceding
frames during generation. This approach enables the model to naturally extend the local consistency
of a few frames to longer sequences. Additionally, FIFO-Diffusion requires no subnetworks or extra
training, depending solely on a base model. This distinguishes it from existing autoregressive methods,
which often require an additional prediction model or fine-tuning for masked frame outpainting.

3.2 Latent partitioning
Although diagonal denoising enables infinitely long video generation, it introduces a training-
inference gap, as the model is trained to denoise all frames at uniform noise levels. To address
this, we aim to reduce noise level differences in the input latents by extending the queue length n
times (from f to nf with n > 1), partitioning it into n blocks, and processing each block indepen-
dently. Note that the extended queue length increases the number of inference steps.
Algorithm 3 in Appendix C provides the procedure of FIFO-Diffusion with latent partitioning. Let a
queue Q has diagonal latents [z1

τ1 ;...; z
nf
τnf

]. We partition Q into n blocks, [Q0;...;Qn−1], of equal
size f , then each block Qk contains the latents at time steps τk = [τkf+1;...; τ(k+1)f ]. Next, we
apply diagonal denoising to each block in a divide-and-conquer manner (See Figure 4 (a)). At
k = 0,..., n− 1, each denoising step updates the queue as follows:

Qk ← Φ(Qk, τk, c; ϵθ). (4)

Latent partitioning offers three key advantages for diagonal denoising. First, it significantly reduces
the maximum noise level difference between the latents from |στnf

−στ1 | to maxk |στ(k+1)f
− στkf+1

|.
The effectiveness of latent partitioning is supported theoretically and empirically by Theorem 3.3 and
Table 3, respectively. Second, latent partitioning improves throughput of inference by processing
partitioned blocks in parallel on multiple GPUs (see Table 2). Last, it allows the diffusion process to
leverage a large number of inference steps, nf (n ≥ 2), reducing discretization error during inference.
We now show in Theorem 3.3 that the gap incurred by diagonal denoising is bounded by the
maximum noise level difference, which implies that the error can be reduced by narrowing the noise
level differences of model inputs.

Definition 3.1. We define zvdm
t := [z1

t ;...; z
f
t ], where zi

t is the latent of the ith frame at time step
t (noise level of σt = ct for a constant c). zvdm

t satisfies the following ODE from [11]:

dzvdm
t = c · ϵ(zvdm

t , t · 1)dt, (5)

for 1 = [1;...; 1] and ϵ(·) is the scaled score function −σ∇z log p(·).
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(a) Latent partitioning

(b) Lookahead denoising

Figure 4: Illustration of latent partitioning and lookahead denoising where f = 4 and n = 2. (a)
Latent partitioning divides the diffusion process into n parts to reduce the maximum noise level
difference. (b) Lookahead denoising on (a) enables all frames to be denoised with an adequate
number of former frames at the expense of two times more computation than (a).

Lemma 3.2. If ϵ(·) is bounded, then

||zi
t − zi

s|| = O(|t− s|) for ∀i.
Proof. Refer to Appendix A.1.

Theorem 3.3. Assume the system satisfies the following two hypotheses:

(Hypothesis 1) ϵ(·) is bounded.
(Hypothesis 2) The diffusion model ϵθ(·) is K-Lipschitz continuous.

Then, for diagonal latents zdiag = [z1
τ1 ;...; z

f
τf
] and corresponding time steps τ diag = [τ1;...; τf ],

||ϵθ(zdiag, τ diag)i − ϵ(zvdm
τi , τi · 1)i|| = ||ϵθ(zvdm

τi , τi · 1)i − ϵ(zvdm
τi , τi · 1)i||+O(|στf − στ1 |),

(6)

where the ϵθ(·)i and ϵ(·)i are ith element of ϵθ(·) and ϵ(·), and τ1 < ... < τf . In other words, the
error introduced by diagonal denoising is bounded by the noise level difference.

Proof. The left-hand side of Equation (6) is bounded as:

||ϵθ(zdiag, τ diag)i − ϵ(zvdm
τi , τi · 1)i||

≤ ||ϵθ(zdiag, τ diag)i − ϵθ(z
vdm
τi , τi · 1)i||+ ||ϵθ(zvdm

τi , τi · 1)i − ϵ(zvdm
τi , τi · 1)i||,

by triangle inequality. Then, the first term of the right-hand side satisfies the following inequality:

||ϵθ(zdiag, τ diag)i − ϵθ(z
vdm
τi , τi · 1)i|| ≤ K||(zdiag, τ diag)− (zvdm

τi , τi · 1)||

≤ K

f∑
j=1

(||zj
τj − zj

τi ||+ |τj − τi|) = O(|στf − στ1 |),

which is from the Lipshitz continuity and Lemma 3.2. Furthermore, we provide justification for
(Hypothesis 2) in Appendix A.2.

3.3 Lookahead denoising
Although our diagonal denoising introduces training-inference gap, it is advantageous in another
respect because noisier frames benefit from observing cleaner ones, leading to more accurate denois-
ing. As empirical evidence, Figure 5 shows the relative MSE losses in noise prediction of diagonal
denoising with respect to the original denoising strategy. The formal definition of the relative MSE is
given by

||ϵθ(zdiag, τ diag)i − ϵ(zvdm
τi , τi · 1)i||2

||ϵθ(zvdm
τi , τi · 1)i − ϵ(zvdm

τi , τi · 1)i||2
. (7)
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Figure 5: The relative MSE losses of the noise
prediction of zi

τi (see Equation (7)) when n = 4.
‘VDM’ indicates the original denoising strategy
as a reference line. ‘LP’ and ‘LD’ denote latent
partitioning and lookahead denoising, respectively.

As depicted in Figure 4 (b), we estimate noise
only for the benefited later half of the frames.
In other words, we perform diagonal denois-
ing with a stride of f ′ = ⌊ f2 ⌋, updating only
the last f ′ frames to ensure that each frame is
denoised with reference to a sufficient number—
at least f ′—of clearer frames. Precisely, for
k = 0,..., 2n − 1, each denoising step updates
the queue as

Qf ′+1:f
k ← Φ(Qk, τk, c; ϵθ)

f ′+1:f . (8)

Algorithm 4 in Appendix C outlines the detailed
procedure of FIFO-Diffusion with lookahead de-
noising. We illustrate the effectiveness of looka-
head denoising with the red line in Figure 5.
Except for a few early time steps, lookahead
denoising enhances the baseline models noise
prediction performance, nearly eliminating the
training-inference gap described in Section 3.2. Note that, this approach requires twice the computa-
tion of the original diagonal denoising since we only update the half of the queue each step. However,
the concerns about the additional computational overhead are easily addressed via parallelization in
the same manner as latent partitioning (see Table 2).

4 Experiment
This section presents the examples generated by existing long video generation methods including
FIFO-Diffusion, and evaluates their performance qualitatively and quantitatively. We also perform
the ablation study to verify the benefit of latent partitioning and lookahead denoising introduced in
FIFO-Diffusion.

4.1 Implementation details
We implement FIFO-Diffusion based on existing open-source text-to-video diffusion models trained
on short video clips, including three U-Net-based models, VideoCrafter1 [2], VideoCrafter2 [3], and
zeroscope2, as well as a DiT-based model, Open-Sora Plan3. We employ the DDIM sampling [24]
with η ∈ {0.5, 1}. Appendix B provides more details about our implementations.
For quantitative evaluation, we measure FVD128 [27] and IS [21] scores using Latte [13] as a base
model, which is a DiT-based video model trained on UCF-101 [26]. We generate 2,048 videos with
128 frames each to calculate FVD128, and randomly sample a 16-frame clip from each video to
measure IS score, following evaluation guidelines in [23]. To calculate computational cost, we adopt
VideoCrafter2 as the baseline model, using a DDPM scheduler with 64 inference steps on A6000
GPUs.

4.2 Qualitative results
We first evaluate the performance of the proposed approach qualitatively. Figure 1 illustrates examples
of long videos (longer than 10K frames) generated by FIFO-Diffusion based on VideoCrafter2. It
demonstrates the ability of FIFO-Diffusion to generate significantly longer videos than the target
length of pretrained baseline models—16 frames in this case. The individual frames exhibit outstand-
ing visual quality with no perceptual quality degradation even in the later part of the videos while
preserving semantic information across all frames. Figure 6 (a) and (b) present the generated videos
with natural motion of scenes and cameras; the consistency of motion is effectively maintained by
referencing earlier frames through the generation process.
Furthermore, Figure 6 (c) illustrates that FIFO-Diffusion can generate videos with extensive motion
driven by a sequence of changing prompts. The capability to generate multiple motions and seamless
transitions between scenes highlight the practicality of our method. Please refer to Appendices D
and E for more examples and our project page1 for video demos, in comparisons with the videos
from other baselines.

2https://huggingface.co/cerspense/zeroscope_v2_576w
3https://github.com/PKU-YuanGroup/Open-Sora-Plan
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(a) "a serene winter scene in a forest. The forest is blanketed in a thick layer of snow, which..."

(b) "A vibrant underwater scene of a scuba diver exploring a shipwreck, 2K, photorealistic."

(c) "A tiger walking → standing → resting on the grassland, photorealistic, 4k, high definition"

Figure 6: Illustrations of long videos generated by FIFO-Diffusion based on (a) Open-Sora Plan
and (b) VideoCrafter2, as well as (c) multiple prompts based on VideoCrafter2. The number on the
top-left corner of each frame indicates the frame index.
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"An astronaut floating in space, high quality, 4K resolution."

Figure 7: Sample videos generated by (first) FIFO-DIffusion on VideoCrafter2, (second) FreeNoise
on VideoCrafter2, (third) Gen-L-Video on VideoCrafter2, and (last) LaVie + SEINE. The number on
the top-left corner of each frame indicates the frame index.
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Table 1: Comparisons of FVD128 and IS scores on UCF-101. FIFO-Diffusion with latent partitioning
and lookahead denoising utilizes Latte [13] as its baseline, where the number of partitions is four
(n = 4). The FVD and IS scores of the other algorithms are obtained from their respective papers,
and PVDM [35] denotes PVDM-L (400-400s).

FVD128 (↓) IS (↑)
StyleGAN-V [23] 1773.4 23.94±0.73

VIDM [14] 1531.9 –
PVDM [35] 648.4 74.40±1.25

FIFO-Diffusion (ours) 596.64 74.44±1.17

Table 2: Memory usages and inference times of long video generation methods. FIFO-Diffusion
utilizes latent partitioning with n = 4 and lookahead denoising.

Memory usage [MB] (↓) Inference time [s/frame] (↓)
Method 128 frames 256 frames 512 frames
FreeNoise [17] 26,163 44,683 out of memory 6.09
Gen-L-Video [30] 10,913 10,937 10,965 22.07
FIFO-Diffusion (1 GPU) 11,245 11,245 11,245 12.37
FIFO-Diffusion (8 GPUs) 13,496 13,496 13,496 1.84

Figure 8: The results of user study between FIFO-
Diffusion and FreeNoise for five criteria.

Figure 7 compares the results from FIFO-
Diffusion with two training-free techniques,
FreeNoise [17] and Gen-L-Video [30] based
on VideoCrafter2, as well as a training-based
chunked autoregressive method, LaVie [32] +
SEINE [4]. Note that the chunked autoregres-
sive method requires two models: LaVie for
T2V and SEINE for I2V. We observe that our
method significantly outperforms the others in
terms of motion smoothness, frame quality, and
scene diversity.
Among the training-free methods, Gen-L-Video
often produces videos with blurred background
while FreeNoise struggles to generate dynamic
scenes.4 The videos from LaVie + SEINE grad-
ually degrade and diverge from text prompts due to error accumulation in their autoregressive
generation processes. Additionally, they often exhibit discontinuities between adjacent chunks,
as only the last frame of each chunk is employed to transfer contextual information to the next.
Figures 18 and 19 in Appendix F provide further examples comparing these methods.
We also conduct a user study to evaluate the long video generation performance of FIFO-Diffusion
compared to an existing approach, FreeNoise. As shown in Figure 8, users expressed a strong
preference for FIFO-Diffusion across all criteria, particularly those related to motion. Given that
motion is one of the most defining characteristics of videos as opposed to images, the strong
performance of FIFO-Diffusion in these criteria is promising and highlights its potential to generate
more natural, dynamic videos. Details about the user study are provided in Appendix B.1.

4.3 Quantitative results

We compare FIFO-Diffusion with the baselines trained for long video generation [23, 14, 35] in
terms of the FVD128 and IS scores. As shown in Table 1, our approach outperforms all the compared
methods including PVDM-L (400-400s) [35], which employs a chunked autoregressive generation
strategy. Note that PVDM-L (400-400s) iteratively generates 16 frames conditioned on the previous
outputs over 400 diffusion steps while our approach only requires 64 inference steps (with lookahead
denoising) without need for additional training.

4We provide qauantitative evaluation on the magnitude of motion in Appendix G.
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"A scenic cruise ship journey at sunset, ultra HD."

Figure 9: Ablation study. DD, LP, and LD signifies diagonal denoising, latent partitioning, and
lookahead denoising, respectively. The number on the top-left corner of each frame indicates the
frame index.

Table 3: Relative MSE losses of ablations. ‘LP’ and ‘LD’ denote latent partitioning and lookahead
denosing, respectively.

# of partitions without LD with LD
without LP 1 1.09 1.01

with LP 2 1.04 0.99
with LP 4 1.02 0.98

4.4 Computational cost
To evaluate computational efficiency, we assess memory usage and inference time per frame for
training-free, long video generation methods. As shown in Table 2, FIFO-Diffusion generates
videos of arbitrary lengths with a constant memory allocation, while FreeNoise requires memory
proportional to the target video length. Although Gen-L-Video maintains nearly constant memory
usage, it exhibits the slowest inference speed due to redundant computations. Notably, FIFO-Diffusion
leverages parallel computation; while incorporating lookahead denoising increases computational
demand, utilizing multiple GPUs for parallel processing significantly reduces sampling time.

4.5 Ablation study
We conduct ablation study to analyze the effect of latent partitioning and lookahead denoising on
the performance of FIFO-Diffusion. Figure 9 shows that latent partitioning significantly improves
both visual quality and temporal consistency of the generated videos. Moreover, lookahead denoising
further refines the quality of generated videos by facilitating temporal coherency and reducing
flickering effects. The videos on our project page5 clearly demonstrate the benefit of FIFO-Diffusion.
Additionally, Table 3 compares the relative MSE loss (see Equation (7)) averaged over all time
steps across different ablation settings. The results show that latent partitioning effectively reduces
the training-inference gap caused by diagonal denoising as the number of partitions increases.
Furthermore, lookahead denoising enhances the model’s noise prediction accuracy, achieving low
relative MSE losses (below 1.0) when used in conjunction with latent partitioning.

5 Related work
This section discusses existing diffusion-based generative models for videos including long video
generation techniques.

5.1 Video diffusion models
Diffusion models, originally developed for high-quality image synthesis, have become a prominent
approach in video generation [2, 9, 22, 37, 31]. VDM [9] modifies the structure of U-Net [19]
and proposes a 3D U-Net architecture to incorporate temporal information for denoising. On the

5https://jjihwan.github.io/projects/FIFO-Diffusion
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other hand, Make-A-Video [22] employs a 1D temporal convolution layer following a 2D spatial
convolutional layer to approximate 3D convolution. This design enables the model to capture
visual-textual relationships by training spatial layers with image-text pairs before incorporating
temporal context through 1D temporal layers. Recently, [16] introduce a transformer architecture,
known as DiT, for diffusion models. Additionally, several open-sourced text-to-video models have
emerged [31, 2, 32, 3], trained on large-scale text-image and text-video datasets.

5.2 Long video generation
Long video generation approaches typically involve training models to predict future frames sequen-
tially [29, 6, 1, 4]. or generate a set of frames in a hierarchical manner [7, 34]. For instance, Video
LDM [1] and MCVD [29] employ autoregressive techniques to sequentially predict frames given
several preceding ones, while FDM [6] and SEINE [4] generalize masked learning strategies for
both prediction and interpolation. Autoregressive methods are capable of producing indefinitely long
videos in theory, but they often suffer from quality degradation due to error accumulation and limited
temporal consistency across frames. Alternatively, NUWA-XL [34] adopts a hierarchical approach,
where a global diffusion model generates sparse key frames with local diffusion models filling in
frames using the key frames as references. However, this hierarchical setup requires batch processing,
making it unsuitable for generating infinitely long videos.
There are a few training-free long video generation techniques. Gen-L-Video [30] treats a video as
overlapped short clips and introduces temporal co-denoising, which averages multiple predictions for
one frame. FreeNoise [17] employs window-based attention fusion to sidestep the limited attention
scope issue and proposes local noise shuffle units for the initialization of long video. FreeNoise
requires memory proportional to the video length for the computation of cross, limiting its scalability
for generating infinitely long videos.

5.3 Diffusion models with latents of different noise levels
Recent studies have adopted diffusion models for sequence generation by leveraging a sliding
window approach with temporally varying noise levels [36, 20]. These methods train diffusion
models from scratch to accommodate latents with different noise levels, addressing tasks such as
motion generation [36] and video prediction [20]. However, training diffusion models from scratch
introduces significant computational costs, especially for text-to-video generation tasks. In contrast,
our approach is a training-free inference technique based on the standard diffusion models, trained on
latents with uniform noise, for sequence generation within the sliding window framework. While
[20] is implemented with a nested loop to deal with two different axes corresponding to video frame
index and diffusion time step, FIFO-Diffusion combines these two dimensions using a 1D queue,
improving efficiency with a single loop.

6 Conclusion
We introduced FIFO-Diffusion, a novel inference algorithm that enables the generation of infinitely
long videos from text without tuning video diffusion models pretrained on short clips. Our approach
achieves this by introducing diagonal denoising, which processes latents with increasing noise levels
using a queue in a first-in-first-out fashion. While diagonal denoising presents a trade-off, we
addressed its limitations with latent partitioning and leveraged its strengths with lookahead denoising.
Together, these techniques allow FIFO-Diffusion to generate high-quality, long videos that maintain
strong scene consistency and expressive dynamic motion. Although latent partitioning reduces the
training-inference gap of diagonal denoising, the gap persists due to changes in the model’s input
distribution. However, we believe that this gap could be addressed by integrating the diagonal
denoising paradigm into the training phase, and the benefits of FIFO-Diffusion remains for training
as well. We leave this integration as future work; aligning the training and inference environments
can significantly enhance FIFO-Diffusion’s performance.
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Appendix
A Details for Lemma 3.2 and Theorem 3.3
A.1 Proof of Lemma 3.2
Lemma 3.2. If ϵ(·) is bounded, then

||zi
t − zi

s|| = O(|t− s|) for any i.

Proof. Since ϵ(·) is bounded, there exists some M > 0 satisfying ||ϵ(·)|| ≤M .

||zi
t − zi

s|| ≤ ||zvdm
t − zvdm

s ||

= ||
∫ t

s

c · ϵ(zvdm
u , u · 1)du||

≤ |
∫ t

s

c · ||ϵ(zvdm
u , u · 1)||du|

≤ c ·M · |t− s|.

A.2 Justification on (Hypothesis 2) of Theorem 3.3
We provide justification for the hypothesis, which the diffusion model is K-Lipschitz continuous. At
inference, we can consider z ∈ [0, B]f×c×h×w and σ ∈ [σmin, σmax], where σmin > 0 since z is pixel
values and we inference for such σ. In appendix B.3 of [11], ϵ(z, σ) is given as the following:

ϵ(z, σ) = −σ
∇z

∑
iN (z; yi, σ

2I)∑
iN (z; yi, σ2I)

,

where y1, y2, . . . , yn are data points. Note that N (z; yi, σ
2I) is twice differentiable and continuous,

and
∑

iN (z; yi, σ
2I) ≥ c for ∃c > 0. Therefore, the differential function of ϵ(z, σ) is bounded and

is Lipschitz continuous. Since ϵθ(·) estimates ϵ(·), assuming Lipschitz continuity can be justified.
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B Implementation details
We provide the implementation details of the experiments in Table 4. We use VideoCrafter1 [2],
VideoCrafter2 [3], zeroscope6, Open-Sora Plan7, LaVie [32], and SEINE [4] as pre-trained models.
zeroscope, VideoCrafter, and Open-Sora Plan are under CC BY-NC 4.0, Apache License 2.0, and MIT
License, respectively. Except for automated results, all prompts used in experiments are randomly
generated by ChatGPT-4 [15]. We empirically choose n = 4 for the number of partitions in latent
partitioning and lookahead denoising. Also, stochasticity η, introduced by DDIM [24], is chosen to
achieve good results from the baseline video generation models.

Table 4: Implementation details regarding experiments

Experiment Model f Sampling Method n η # Prompts # Frames Resolution
MSE loss VideoCrafter1 16 FIFO-Diffusion 4 0.5 200 - 320× 512

(Figure 5 and Table 3)

Qualitative Result

zeroscope 24 FIFO-Diffusion 4 0.5 - 100 320× 576
VideoCrafter1 16 FIFO-Diffusion 4 0.5 - 100 320× 512
VideoCrafter2 16 FIFO-Diffusion 4 1 - 100∼10k 320× 512

Open-Sora Plan 17 FIFO-Diffusion 4 1 - 385 512× 512
VideoCrafter2 16 FreeNoise - 1 - 100 320× 512
VideoCrafter2 16 Gen-L-Video - 1 - 100 320× 512

LaVie + SEINE 16 chunked autoregressive - 1 - 100 320× 512

User Study VideoCrafter2 16 FIFO-Diffusion 4 1 30 100 320× 512
LaVie 16 FreeNoise - 1 30 100 320× 512

Motion Evaluation VideoCrafter1 16 FIFO-Diffusion 4 0.5 512 100 256× 256
VideoCrafter1 16 FreeNoise - 0.5 512 100 256× 256

Ablation study zeroscope 24 FIFO-Diffusion {1, 4} 0.5 - 100 320× 576

B.1 Details for user study
We randomly generated 30 prompts from ChatGPT-4 without cherry-picking, and generated a video
for each prompt with 100 frames using each method. The evaluators were asked to choose their
preference (A is better, draw, or B is better) between the two videos generated by FIFO-Diffusion
and FreeNoise with the same prompts, on five criteria: overall preference, plausibility of motion,
magnitude of motion, fidelity to text, and aesthetic quality. A total of 70 users submitted 111 sets of
ratings, where each set consists of 20 videos from 10 prompts. We used LaVie as the baseline for
FreeNoise, since it was the latest model officially implemented at that time.

6https://huggingface.co/cerspense/zeroscope_v2_576w
7https://github.com/PKU-YuanGroup/Open-Sora-Plan
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C Algorithms of FIFO-Diffusion
This section illustrates pseudo-code for FIFO-Diffusion with and without latent partitioning and
lookahead denoising.

Algorithm 1 FIFO-Diffusion with diagonal denoising (Section 3.1)

Require: N , f , ϵθ(·), Dec(·), Φ(·)
Input: [z1

τ1 ;...; z
f
τf
], [τ1;...; τf ], c

Output: v
v ← []
τ ← [τ1;...; τf ]
Q← [z1

τ1 ;...; z
f
τf
]

for i = 1 to N do
Q← Φ(Q, τ , c; ϵθ) # Equation (3)
zi
τ0 ← Q.dequeue() # Fully denoised frame

v.append(Dec(zi
τ0))

zi+f
τf
∼ N (0, I) # New random noise

Q.enqueue(zi+f
τf

)
end for
return v

Algorithm 2 Initial latent construction (Section 3.1)

Require: N , f , ϵθ(·), Dec(·), Φ(·)
Input: z1:f

τf
∼ N (0, I), {τi}fi=0, c

Output: [z1
τ1 ;...; z

f
τf
]

τ ← [τf ;...; τf ]
Q← [z1

τf
;...; zf

τf
]

for i = 1 to f do
Q← Φ(Q, τ , c; ϵθ)

Q.dequeue()
zi
τf
∼ N (0, I) # New random noise

Q.enqueue(zi
τf
)

τ ← [

f−i︷ ︸︸ ︷
τf−i;...; τf−i;

i︷ ︸︸ ︷
τf−i+1...; τf ] # Varying timestep

end for
return Q = [z1

τ1 ;...; z
f
τf
]
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Algorithm 3 FIFO-Diffusion with latent partitioning (Section 3.2)

Require: N , f , ϵθ(·),Dec(·),Φ(·), n # n ≥ 2 if latent partitioning
Input: [z1

τ1 ;...; z
nf
τnf

], [τ1;...; τnf ], c
Output: v
v ← [ ]
τ ← [τ1;...; τnf ]
Q← [z1

τ1 ;...; z
nf
τnf

]

for i = 1 to N do
for k = 0 to n− 1 do # Parallelizable

τk ← τ kf+1:(k+1)f

Qk ← Qkf+1:(k+1)f

Qk ← Φ(Qk, τk, c; ϵθ) # Equation (4)
end for
Q← [Q0;...;Qn−1]
zi
τ0 ← Q.dequeue()

v.append(Dec(zi
τ0))

zi+nf
τf

∼ N (0, I)

Q.enqueue(zi+nf
τnf

)
end for
return v

Algorithm 4 FIFO-Diffusion with lookahead denoising (Section 3.3)

Require: N, ϵθ(·),Dec(·),Φ(·), n # n ≥ 2 if latent partitioning
Input: [z1

τ1 ;...; z
nf
τnf

], [τ1;...; τnf ], c
Output: v
v ← [ ]

τ ← [

f ′︷ ︸︸ ︷
τ1;...; τ1; τ1;...; τnf ]

Q← [

f ′︷ ︸︸ ︷
z1
τ1 ;...; z

1
τ1 ; z

1
τ1 ;...; z

nf
τnf

] # dummy latents are required

for i = 1 to N do
zi
τ1 ← Qf ′+1

for k = 0 to 2n− 1 do # Parallelizable
τk ← τ kf ′+1:(k+2)f ′

Qk ← Qkf ′+1:(k+2)f ′

Qf ′+1:f
k ← Φ(Qk, τk, c; ϵθ)

f ′+1:f # Equation (8)
end for
zi
τ0 ← Qf ′+1

0

v.append(Dec(zi
τ0))

Qf ′+1
0 ← zi

τ1

Q← [Q1:f ′

0 ;Qf ′+1:f
0 ;...;Qf ′+1:f

2n−1 ]

Q← [Q0;Q
f ′+1:f
1 ;...;Qf ′+1:f

2n−1 ]
Q.dequeue()

zi+nf
τnf

∼ N (0, I)

Q.enqueue(zi+nf
τnf

)
end for
return v
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D Qualitative results of FIFO-Diffusion
In Figures 10 to 15, we provide more qualitative results with 4 baselines, VideoCrafter2 [3],
VideoCrafter1 [2], zeroscope8, and Open-Sora Plan9.

D.1 VideoCrafter2

(a) "A colony of penguins waddling on an Antarctic ice sheet, 4K, ultra HD."

(b) "A colorful macaw flying in the rainforest, ultra HD."

(c) "A dark knight riding on a black horse on the glassland, photorealistic, 4k, high definition."

(d) "A high-altitude view of a hang glider in flight, high definition, 4K."

(e) "A high-speed motorcycle race on a track, ultra HD, 4K resolution."

(f) "A horse race in full gallop, capturing the speed and excitement, 2K, photorealistic."

Figure 10: Videos generated by FIFO-Diffusion with VideoCrafter2. The number on the top left of
each frame indicates the frame index.

8https://huggingface.co/cerspense/zeroscope_v2_576w
9https://github.com/PKU-YuanGroup/Open-Sora-Plan
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(a) "A pair of tango dancers performing in Buenos Aires, 4K, high resolution."

(b) "A panoramic view of a peaceful Zen garden, high-quality, 4K resolution."

(c) "A paraglider soaring over the Alps, photorealistic, 4K, high definition."

(d) "A scenic hot air balloon flight at sunrise, high quality, 4K."

(e) "A scenic hot air balloon flight over Cappadocia, Turkey, 2K, ultra HD."

(f) "A school of colorful fish swimming in a coral reef, ultra high quality, 2K."

(g) "A spectacular fireworks display over Sydney Harbour, 4K, high resolution."

Figure 11: Videos generated by FIFO-Diffusion with VideoCrafter2. The number on the top left of
each frame indicates the frame index.
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(a) "A spooky haunted house, foggy night, high definition."

(b) "A time-lapse of a busy construction site, high definition, 4K."

(c) "A vibrant underwater scene of a scuba diver exploring a shipwreck, 2K, photorealistic."

(d) "A vibrant, fast-paced salsa dance performance, ultra high quality, 2K."

(e) "An astronaut floating in space, high quality, 4K resolution."

(f) "An astronaut walking on the moon’s surface, high-quality, 4K resolution."

(g) "A majestic lion roaring in the African savanna, ultra HD, 4K."

Figure 12: Videos generated by FIFO-Diffusion with VideoCrafter2. The number on the top left of
each frame indicates the frame index.

19



D.2 VideoCrafter1

(a) "A kayaker navigating through rapids, photorealistic, 4K, high quality."

(b) "A pair of tango dancers performing in Buenos Aires, 4K, high resolution."

(c) "A panoramic view of the Himalayas from a drone, high definition, 4K."

(d) "A paraglider soaring over the Alps, photorealistic, 4K, high definition."

(e) "A professional surfer riding a large wave, high-quality, 4K."

(f) "A school of colorful fish swimming in a coral reef, ultra high quality, 2K."

(g) "An exciting mountain bike trail ride through a forest, 2K, ultra HD."

(h) "A vibrant coral reef with diverse marine life, photorealistic, 2K resolution."

Figure 13: Videos generated by FIFO-Diffusion with VideoCrafter1. The number on the top left of
each frame indicates the frame index.
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D.3 zeroscope

(a) "A beautiful cherry blossom festival, time-lapse, high quality."

(b) "A close-up of a tarantula walking, high definition."

(c) "A thrilling white water rafting adventure, high definition."

(d) "A detailed macro shot of a blooming rose, 4K."

(e) "A panoramic view of the Milky Way, ultra HD."

(f) "A mysterious foggy forest at dawn, high quality, 4K."

(g) "A scenic cruise ship journey at sunset, ultra HD."

(h) "A lone tree in a vast desert, sunset, high definition."

Figure 14: Videos generated by FIFO-Diffusion with zeroscope. The number on the top left of each
frame indicates the frame index.
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D.4 Open-Sora Plan

(a) "A quiet beach at dawn, the waves gently lapping at the shore and the sky painted in pastel hues."

(b) "A snowy forest landscape with a dirt road running through it. The road is flanked..."

(c) "The majestic beauty of a waterfall cascading down a cliff into a serene lake."

(d) "Slow pan upward of blazing oak fire in an indoor fireplace."

(e) "The dynamic movement of tall, wispy grasses swaying in the wind. The sky above is ..."

(f) "a serene winter scene in a forest. The forest is blanketed in a thick layer of snow, which..."

Figure 15: Videos generated by FIFO-Diffusion with Open-Sora Plan. The number on the top left of
each frame indicates the frame index.
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E Multi-prompts generation for FIFO-Diffusion
E.1 Method
For multi-prompts generation, we simply change prompts sequentially during the inference. To be
specific, let c1, . . . , ck be k prompts, and 0 = n0 < n1 < . . . < nk are increasing sequence of
integers. Then, we use prompt condition ci for (ni−1 + 1)th ∼ nth

i iterations.

E.2 Qualitative results
In Figures 16 and 17, we provide more qualitative results based on VideoCrafter2.

(a) "Ironman running → standing → flying on the road, 4K, high resolution."

(b) "A tiger walking → standing → resting on the grassland, photorealistic, 4k, high definition"

(c) "A teddy bear walking → standing → dancing on the street, 4K, high resolution."

Figure 16: Videos generated by FIFO-Diffusion with three prompts. The number on the top left of
each frame indicates the frame index.
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(a) "A tiger resting → walking on the grassland, photorealistic, 4k, high definition"

(b) "A whale swimming on the surface of the ocean → jumps out of water , 4K, high resolution."

(c) "Titanic sailing through the sunny calm ocean → a stormy ocean with lightning, 4K, high resolution."

(d) "A pair of tango dancers performing → kissing in Buenos Aires, 4K, high resolution."

Figure 17: Videos generated by FIFO-Diffusion with two prompts. The number on the top left of
each frame indicates the frame index.
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F Qualitative comparisons with other long video generation methods
In Figures 18 and 19, we provide more qualitative comparisons with other longer video generation
methods, FreeNoise [17], Gen-L-Video [30], and LaVie [32] + SEINE [4].
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(a) "A vibrant underwater scene of a scuba diver exploring a shipwreck, 2K, photorealistic."
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(b) "A panoramic view of a peaceful Zen garden, high-quality, 4K resolution."

Figure 18: Qualitative comparisons with other long video generation techniques, Gen-L-Video,
FreeNoise, and LaVie + SEINE. The number in the top-left corner of each frame indicates the frame
index.
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(a) "A pair of tango dancers performing in Buenos Aires, 4K, high resolution."
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(b) "A spooky haunted house, foggy night, high definition."

Figure 19: Qualitative comparisons with other long video generation techniques, Gen-L-Video,
FreeNoise, and LaVie + SEINE. The number in the top-left corner of each frame indicates the frame
index.

26



G Motion evaluation
We measure optical flow magnitudes (i.e. average of optical flow magnitudes) to compare the amount
of motion between FIFO-Diffusion and FreeNoise, for the videos generated with randomly sampled
prompts from the MSR-VTT [33] test set. Figure 20 illustrates that over 65% of videos generated by
FreeNoise are located in the first bin, indicating significantly less motion compared to FIFO-Diffusion.
In contrast, our method generates videos with a broader range of motion.

Figure 20: Comparison of optical flow magnitudes between FIFO-Diffusion and FreeNoise.
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H Ablation study

In Figures 21 and 22, we conduct an ablation study to investigate the effectiveness of each component
in FIFO-Diffusion. We compare the results of FIFO-Diffusion only with diagonal denoising (DD),
with the addition of latent partitioning with n=4 (DD + LP), and lookahead denoising (DD + LP +
LD).
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(a) "A panoramic view of the Milky Way, ultra HD."
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(b) "A scenic cruise ship journey at sunset, ultra HD."
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(c) "A beautiful cherry blossom festival, time-lapse, high quality."

Figure 21: Ablation study. DD, LP, and LD signifies diagonal denoising, latent partitioning, and
lookahead denoising, respectively. The number on the top-left corner of each frame indicates the
frame index.
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(a) "A detailed macro shot of a blooming rose, 4K."

D
D

D
D

+L
P

D
D

+L
P+

L
D

(b) "A close-up of a tarantula walking, high definition."

Figure 22: Ablation study. DD, LP, and LD signifies diagonal denoising, latent partitioning, and
lookahead denoising, respectively. The number on the top-left corner of each frame indicates the
frame index.

I Potential Broader Impact
This paper leverages pretrained video diffusion models to generate high quality videos. The proposed
method can potentially be used to synthesize videos with unexpectedly inappropriate content since it
is based on pretrained models and involves no training. However, we believe that our method could
mildly address ethical concerns associated with the training data of generative models.
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