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Denoising Diffusion Probabilistic Models [3]:
Minimizing Negative Log-Likelihood



DDPM

Overview

Po(X—1|x¢)
@—’ —*@ @—’ —’.

Flgure 2: The directed graphical model considered in this work.



DDPM

Forward Process

» Forward Process is a Markov chain that gradually perturbs images
to Gaussian distribution.

Xt Xo:t—1, (1)
Q(xo) = Pdata(xo); (2)
a(xe|xe—1) == N(X; /1 — BiXe—1, B]). (3)



DDPM

Backward Process

» Backward Process is also a Markov chain that gradually denoises
noises from perturbs images.

Xe Al X7:t44, (4)
po(xr) = N(x7;0,1), (5)
Po(Xt—q|X¢) =777.



DDPM

Backward Process

Lemma 1
When (3 is small for q(x¢|Xt—1) = N (X¢; v/1 — BeXe—1, Btl), its reverse
conditional distribution q(x¢—|X¢) is also a Gaussian:

a(Xe—1|X¢) = N (Xe—1; (xt + BtV loga(xt)), B).  (6)

1
1— Bt
> It is reasonable to parametrize V log q(x;) by neural network.

Po(Xe—1[Xe) = N (X¢—s; %&(xt + Brso(xt, ), el). )



DDPM

Objective

» The objective of DDPM is to minimize negative log-likelihood.

Exo~a [~ log po(%o)] - (8)



DDPM

Objective
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DDPM
Objective
» Forward Process:

T

a(xrlxo) = [T alxexc)

t=1

T
= Q(X1 |xo) H q(xt‘xt—h xo)

a(X:[%o0)a(Xe—1]Xt, Xo)
= q(xi[xo) H PO

=2

-
= q(xr[xo) | [ a(xt—[xe, xo).

t=2
» Backward Process:

Po (XT:O) = Po (XT) H Po (Xt_1 |Xt).

t=T



DDPM

Objective

» The surrogate of negative log-likelihood is
a(X::7]Xo)
Ex. g |1
o7~ [og pg(xoﬁ)} (19)

a(xr[xo) TTi_, a(xe—1xe, Xo)
= IE:XO:T""Z

po(xr) [Ti_r po (Xe—1x:)

(20)

= Dia(a(xr[X0) [P (xr)) + Eq [ log po (Xo[%:)] + D Dia(a(Xt—1[Xt, Xo)| [P0 (Xe—1xc)).
—2 21



DDPM

Objective

» q(X¢_1|X¢) and pg(X¢_1|X¢) are Gaussian distributions.

1— Qi

a(Xe—1|Xt, Xo) = N (Xe—s; \/11_7@()& + BtV log a(xt[xo)), — Bd), (22
Po (xt—1 ‘xt) = N(Xt—1§ 7/171—ﬂ *t(xf + Brso (xfa t))7 thI)' (23)

» Therefore, the surrogate of negative log-likelihood becomes

.
> Aillso(x:,t) — V log a(xt|xo)| |5 + C. (24)
t=2



DDPM

Objective

> Forx; = /GXo — v/1— die for e ~ N(0,1),
a(xe[x0) = N (%; Vo, (1— @)l

1

= (2n(1— &)™ eXP(—mHXt = Vauxol[).
1 1
=V log g(x¢|xo) = i a (xt — Vauxo) = ﬁe.

» For sp(x¢, t) = ﬁEQ(Xt, t), the objective (24) becomes

1— Qi

T
A

5 B |2l — V= )~ el

t=2

A - =
(7= D |2 oo — VA=) = ]
- t

(28)

(29)



DDPM

Sampling

Sampling algorithm:

xr ~ N(0,1), (30)
1

i

Xt—1[xt ~ N ( (xt + Bisa(x¢, 1)), Bil). (31)

» The assumption, small 3;, in Lemma 1is required to properly
model the backward distribution. This leads to slow sampling
speed.



Score-Based Generative Modeling through
Stochastic Differential Equations [9]:
Matching Marginal Distributions



Score-Based Generative Models
Overview

lE Forward SDE (data — noise)

dx = f(x,t)dt + g(t)dw

W

scor functln ST
dx = [f(x,t) — g*(t *Vx logpt(x] dt + g(t)dw

Reverse SDE (noise — data)




Score-Based Generative Models
Forward SDE

» Forward SDE diffuses data distribution to Gaussian distribution
dx; = f(t)x:dt + g(t)dwe, Xo ~ Paata, (32)

where w; is Brownian process.

» A solution of (32), {xt}tT:o, can be treated as a sample from the
joint distribution {p;}{_,.

» Learning joint distribution is difficult and the region of interest is
Xo ~ Po. Therefore, authors detour to learn marginal distribution.



Score-Based Generative Models
Backward SDE/ODE

» Backward SDE/ODE matches marginal distribution of forward SDE.
(This can be proven by Fokker-Plank equation)

dx: = [f(t)xdt — g*(t)V log pe(xt)] dt + g(t)dWw:, xr ~ N(0,1), (33)
dxe = [f(t)Xtdt — %gz(t)v log pr(Xt)} dt, xr ~N(0,1), (34)

where W is reverse-time Brownian process.
» Note that the sampling at the boundary (t = T) is simple.

» Since f(-) and g(+) are given, the only unknown component of
(33) and (34) is V log pt(x¢), which is known as a score function.

» |t is reasonable to paramerize a score function with a neural
network, sp(xt, t).



Score-Based Generative Models
Objective

P> The objective of score-based generative models is to learn score
function:

;
/ MeEx, [|Iso(xe, t) — V log pe(x:)|[3] dt. (35)

» Impossible to train since V log p¢(x;) in (35) is intractable!

» With equivalent equation, training the network is feasible.

;
/ MExo [Ex,jxo [|I56(Xt; t) — V log pejo(XtXo)|[3] ] dt + C. (36)
(o)



Score-Based Generative Models
Objective

» Variance-Exploding (VE) SDE

dxt = O'th7
Xt|Xo ~ N (Xo, to?)

» Variance-Preserving (VP) SDE

dxt = —thdt + O'th
1—e 2t

28

Xt|Xo ~ N(e™ "o, )

(37)
(38)



Score-Based Generative Models
Objective

» For both cases, x; = X, — o€ for e ~ N(0,1).
> Asin DDPM, V log py(o(Xt[Xo) = =

» The objective (36) becomes

]
/ 2B, [Ee o0t — v, ) — el 2]
(o]

t

A
= TEx, t,e [U—;Hee(%xo — e, t) — €|[3]| dt.
t



Score-Based Generative Models
Sampling

In the perspective of solving ODE by Euler method,

dxt = f@(Xt dt Xt = XT (43)
Xo = X1 +/ fo(x¢)d (44)
tiy
= X7+ Z / fo(x¢)dt (45)
i=N /b
—XT+Zt1 1= t)fo(xe) + O(|tios — tif?) (46)

» Requirement of discretizations for precise approximation on
integral causes slow sampling speed.



Summary

» The objective of DDPM is to minimize the surrogate of the
negative log-likelihood.

» The objective of score-based generative models is to match
marginal distribution of forward SDE and backward SDE/ODE.

» The slow speed of DDPM is due to assumption, 5; << 1in
Lemma 1.

» The slow speed of score-based generative models originates from
the discretizations which minimize errors in integral.

» Even two works have different motivations, but their objectives
are the same: learn score function by a neural network.



Components to Implement Diffusion Models

» Training
» Choice of forward SDE: VP SDE, VE SDE,etc..
> What should model predict? Denoiser E[x,|x;], or noise €.
» Choice of weights, ;.
» Sampling
» Choice of SDE/ODE solvers: Euler, Heun’s, Runge-Kutta, etc..
» Discretization methods: practically small |t;_, — t;| for small i
(when data is near image manifold) yields better quality of
samples.




Strong and Weak Points of Diffusion Models.



Diffusion Models vs GANs [2]

Table 1: Comparisons between diffusion models and GANs.

Diffusion Models

Objective explicit
Optimization minimization
Sampling speed NFE >>1

Mode coverage high




Strong Points of Diffusion Models

Training stability

Anillustration of an avocado sitting A 2D animation of a folk music band
in a therapist’s chair, saying 'l just composed of anthropomorphic autumn leaves,
feel so empty inside’ with a pit-sized each playing traditional bluegrass instruments,

hole in its center. The therapist, amidst a rustic forest setting dappled

a spoon, scribbles notes. with the soft light of a harvest moon.

Figure 1: Image generated by DALL-E 3 ". Training stability of diffusion models
enables training on a large scale dataset.

“https://openai.com/dall-e-3



Strong Points of Diffusion Models

Controllable generation

» Suppose we only have unconditional score function, V log pt(xt).
» Still we can generate conditional sample X, |y.

» To generate X, |y, we have to solve backward ODE as following:

dx. = [f(t)dt — ~g*(6)V log pe(xely)] dt,  xr ~ N(0,1) (47)

» The conditional score function can be calculated by

pe(x)pe (y[x:)
pe(y)
= Vylogpi(x:) + Vy logpe(ylx:) (49)

unconditional score fucntion external information

Vi log pe(x:]y) = Vi, lo




Strong Points of Diffusion Models

Bi-directional ODE solving

» Generating samples by ODE makes the sampling path
deterministic. Moreover, solving in (image — latent) direction is
also feasible. These properties are useful for many tasks.

> e.g., for the I12l task, many calculate the latent of the source
image and give it as a boundary condition of target sampling ODE.
Moreover, cycle consistency is guaranteed theoretically.



Weak Points of Diffusion Models

Slow sampling speed

» When solving ODE, small |t;_, — t;| is required to calculate
following integral precisely, which leads to slow generation.

ti—q
/ fo(x)dt (s0)
t;

» To accelerate generation, accurate integral for large |ti_, — ;] is
required.
1. Advanced inference algorithms

/ti_1 fo(xe)dt ~ (ti—1 — ti)h(fo(x:)) (5

» e.g., Euler [7], Heun’s method [4], PNDM [5], GENIE [1]
2. Distillation algorithms

tiy
/ o (x)dt ~ ho (x) (52)
t;

i

» e.g., Progressive disillation [6], Consistency models [8]
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