Designing Diffusion Models in Real World

Junoh Kang

Computer Vision Laboratory
ECE, Seoul National University
junoh.kang@snu.ac.kr

Ry Computer Vision Lab

Seoul National University

Elucidating the Design Space of Diffusion-Based Generative
Models (EDM)

The reasons of reviewing the paper

| 2

>

>

EDM has limited theoretical novelty, and its contributions are
mainly engineering-oriented.

In deep learning, practical implementation is just as important as
theoretical support.

When proposing new paradigms without any baseline codes,

engineering skills are essential to bring the paradigms into the
real world.

The suggestions in the paper may not be optimal, but they are
theoretically or empirically supported.

| am not an engineering-oriented person and | want to learn such
reasonings from the paper.

Contents

1. Revisit Diffusion Models

2. Improvements to Training

3. Improvements to Determinisitic Sampling
4. Stochastic Sampling

Revisit Diffusion Models

Revisit Diffusion Models

Reformulate Diffusion Models

Song et al. [3] defines forward SDE as
dx¢ = f(t)xdt + g(t)dwy. (1)
As a consequence, the marginal distirbution at time t becomes

p(x¢[xo) = N (x¢; s(t)xo, s(t)*a(t)?1), (2)

where s(t) = exp([f(£)d€) and o (t) = otf((gj :

Song et al. [3] indirectly defines the marginal distribution by f(-) and
g(+). However, the marginal distribution is the most important factor
for training diffusion models.

Revisit Diffusion Models

Reformulate Diffusion Models

Instead of defining f(-) and g(-), EDM directly defines the marginal
distribution by setting s(-) and o (+):

p(xe) = s(t) ~p(xe/s(t); o (1)), (3)
where p(x; 0) = [Pdata * N(0, 021)] (x).
Then, the corresponding probability flow ODE is

dxe = [$(t)/s(t) — s(t)*o(t)o(t) Vxlog p(xe/s(t); o (t))] dt. (4)

Revisit Diffusion Models

Obstacles in diffusion models
1. Generation by diffusion models can be interpreted as solving

dx¢ = f(x¢, s(t), o(t))dt. (5)

2. Since f(x¢, s(t), o(t)) is not known, it is parametrized by a
network fy(x¢, s(t), o(t)). The inaccurate approximation on the
target causes degradation. — Better training.

3. The solution at t = 0 given boundary conditionatt =T is

)
Xo = X7 + / F(xe, S(8), o(£))dt. (6)

The integral is numerically calculated, which causes truncation
error. — Reduce truncation errors, focus on important region.

Revisit Diffusion Models
Design Space of Diffusion Models

» Components regarding Training
» Parametrization
» Network preconditioning: csip(0), Cout(0), Cin(c), Cnoise()
> Loss weighting: A(t)
» Noise distribution: o ~ pnoise
> Augmentation
» Components regarding Deterministic Sampling
» Truncation-error-reducing ODE: s(t), o(t)
» Truncation-error-reducing algorithms: Higher-order inegrators
> Distributing truncation errors properly: Discretization {t;}N
» Components regarding Stochastic Sampling

> Rate of replaced noises ((t)
> Heuristics: Stmin, Stmax; Snoises Schurn-

Improvements to Training

Training

Parametrization

For s(t) = 1, D(x¢, o) is a denoiser which minimizes £,-norm with y:
Ey~pga EID(Y 4 1) — [[3. (7)
The relation between a score function and the ideal denoiser is
Vx logp(x; o) = (D(x; o) — x) /o> (8)

Networks in many baselines predicts either D(x, o) or n.

Training
Parametrization
Benny et al. [1] observes that predicting the denoised output, D(x; o),

is eaiser for high noise level, while predicting the noise, n, is eaiser for
low noise level.

loss p
—_— Xg

1074 4
__-_-_—'-‘-—-.‘

1075

\
1075 4
10° 10! 102 107

step (t)

Figure 1: Loss comparison between predicting the denoised output or the
added noise.

Training

Network preconditioning

To predict D(x; o) or n, or something in between according to the
noise level, EDM parametrizes the denoiser function by

DO(X; U) = Cskip(O’)X + Cout(U)FG(Cin(U)x; Cnoise(a)), (9)

where Fy is a neural network.
> cqip modulates skip connection.
» ¢, controls input scale.
P> cout controls output scale.
>

Cnoise Maps noise level into a conditioning input.

Training

Network preconditioning

Then, the loss function (7) is

Eoyb | AMa)cout(0)’ || Fo(cin(0)(y + 1 Croise (7)) — ﬁ(g)(y — csap(0)(y +m)) |12

effective training target

effective weight network output

(10)

Training

Network preconditioning

1. Cnoise(0) = % log(o) is chosen empirically.

2. Inputs should have unit variance.
Vary o [cin(o)(y +n)] =1
= cin(0) =1/4/02 + 03,1

3. Effective training target should have unit variance.

0 = o)y + n))} —

out

Vary n
yn | c

2

= Cout(0)? = (1= Cskip(0))?0data + Cskip(0)?0>.

(11)

(12)

(13)

(14)

Training

Network preconditioning

4. Errors of network should not be amplified.

Cskip(0) = arg min cout (o) (15)
Cskip(a)
Cskip(0) = Odata/ (0% + 0data) (16)
Cout(0) = 0 - Odata/ /02 + O34
5. Effecitve weight should be uniform.
= MNo) = (0% + 03.42)/(0 - Odata)>- (18)

6. Finally, the expected value of the loss at each noise level is 1.
Moreover, the change of effective training target according to o
coincides to the observation of Benny et al. [1].

Training

Netowrk preconditioning & noise distribution
At low noise levels, seperating the small noise components is difficult
and irrelevant, whereas at high noise levels, the correct answer
approaches to dataset average; EDM focuses on middle range noise
levels for training: log(c) ~ N(—1.2,1.2).

CIFAR-10 at 32x32, VP — Loss after initialization

loss
‘ FFHQ at 64x64, VP - - Our noise distribution

a=0.005 0.02 0.1 05 1 2 5 10 20 50

(a) Training loss & noise distribution

Figure 2: Observed loss per noise level. The shaded regions represent the
standard deviation over 10k rondaom samples. EDM’s proposed training
sample density is shown by the dashed red curve.

Training

Augmentation

EDM uses augmentation pipeline from the GAN literature [2].

Table 6: Our augmentation pipeline. Each training image undergoes a combined geometric transfor-
mation based on 8 random parameters that receive non-zero values with a certain probability. The
model is conditioned with an additional 9-dimensional input vector derived from these parameters.

Augmentation | Transformation Parameters Prob. | Conditioning | Constants
z-flip ScaLe2D(1 — 2ao, 1) ao ~U{0,1} 100% | ao Aprob = 12%
y-flip scace2D(1, 1 — 2a1) a1 ~U{0,1} Apob | a1 or 15%
Scaling ScaLE2D ((Ascale)*?, az ~N(0,1) Apob | a2 Ascale = 2°2
(Ascare) ™)
Rotation ROTATEZD(fag) a3 ~U(—m,m) | Apob | cosaz —1
sin a3
Anisotropy ROTATE2D (a4) as ~U(—7,m) | Apob | G5 COSas Aaniso = 202
SCALEZD((AamSO)as, as ~ N(0,1) as sinaq
1/ (Auniso)**)
ROTATE2D (—(14)
Translation TRANSLATE2D ((Atmm)aﬁ, as ~ N(0,1) Apov | a6 Apans = 1/8
(Amms)a7) a7 ~N(0,1) ary

Training

Augmentation

1. Each augmentation is enabled with Apop.

2. Draw a; from each enabled augmentation and construct
transformation matrix.

3. Pass data through 2x supersampled high-quality Wavelet filters.

4. Construct a 9-dimensional conditioning input vector for
non-leaking augmentation. This vector makes the network to
perform auxiliary tasks.

Improvements to
Determinisitic Sampling

Improvements to Determinisitic Sampling

Higher-order integrators & Discretization

For s(t) = 1the ODE becomes

dx; = [(t)o () Vx log p(xe; ()] dt.

With o(t) = t and denoiser, the ODE simplifies into

dXt/dt = (Xt — D(Xt; t))/t
= f(Xt, t)

(20)
(21)

Improvements to Determinisitic Sampling

Truncation-error-reducing algorithms: Higher-order inegrators

Euler method approximates the integral by

tiq
/ f(xe, t)dt = (tioq — ti)f(xg, ti) + O([ti—y — ti[*). (22)
ti

Therefore, the total truncation error is O(max |tji_, — t;|).

Let X;,_. is a solution obtained by Euler method. Then, Heun’s method
approximates the integral by

/ h f(xe, t)dt = (timg — t;)(F(xe, t;) + F(Re_,, tiza))/2 + O([tizy — if*).

(23)

Therefore, the total truncation error is O(max |ti_, — tj|?). Huen’s
method decreases truncation error at the cost of one additional
evaluation of the network.

Improvements to Determinisitic Sampling

Truncation-error-reducing algorithms: Higher-order inegrators

Algorithm 1 Deterministic sampling using Heun’s 2" order method with arbitrary o (t) and s(t).

1: procedure HEUNSAMPLER(Dy(x; o), o(t), s(t), tieqo,...,N})
2 sample o ~ N (0, o®(to) s*(to) I) > Generate initial sample at ¢,
3 fori e {0,...,N—1}do > Solve Eq. 4 over N time steps
o (t:) 5(ti)) _olt)s(ts) (
4 d; (+ ; ;o(ti) > Evaluate dz/dt at t;
o) Ta))" T o) D\s@)
5: Tip1 < T + (ti+1 — ti)di > Take Euler step from ¢; to ¢;41
6 if o(ti+1) # 0 then > Apply 2™ order correction unless o goes to zero
, o (tit1) (t1+1)> & (tit1)s(tit1) (Tit1)
i Dy ot Eval. i
7 di +— (a(t1+1) +) +1— o(tir) P o(ti+1) | >Eval. de/dt at tit1
8 @ip1 i + (tiga — ta)(3di + 3d) > Explicit trapezoidal rule at ;41
9 return TN > Return noise-free sample at ¢ v

Improvements to Determinisitic Sampling

Distributing truncation error properly: Discretizations {t;}g

As long as using numerical integrators with limited computational
resources, truncation errors are inevitable. In terms of obtaining ODE
trajectories accurately, it is important to minimize total truncation
errors. However, the interests of diffusion models at generation are

only the solutions at low noise levels; it is reasonable to focus on low
noise levels.

For discretization

i
tn—i = Oi<n = (U:n/:fx ﬁ(am] - aﬂéa”x))”, ON = O, (24)

increasing p results dense discretizations at low noise levels.

Improvements to Determinisitic Sampling

Distributing truncation error properly: Discretizations {t,-}g

=l FID
102 ‘7,;: 10 —15 —20 —3.0 77.[)‘ 02| —P=10 —15 —20 —30 —7.0 10
9 54
8 — ImageNet-64, N = 12
7
6
5
4
3
10 10
0=0.02 0.1 05 1 2 5 10 20 50 0=0.02 0.1 05 1 2 5 10 20 50 p=1 2 3 4 5 6 7 8 9 10
(a) Truncation error, VE + Euler (b) Truncation error, VE + Heun (c) FID as a function of p

Figure 3: (a),(b) Local truncation error at different noise levels. (c) FID as a
function of p.

p = 3 nearly equalizes the truncation error at each step as in
Figure 3(a),(b). However, p = 7 generates better samples as in
Figure 3(c).

Proper value of p may change according to the tasks. e.g., Equalized
truncation error is needed for solving ODE in both directions.

Improvements to Determinisitic Sampling
Truncation-error-reducing ODE: s(t), o (t)

Many integrators including Euler and Heun’s method have small
truncation errors if f(x;, t) has small curvature, or is close to linear
function. s(t) and o(t) determine the shape of the ODE solution
trajectories, which is closely related to linearity of the f(-).

/t;_1 e, Bt {(t, 2 — (%, t7) Euler method
t

(tiog — ti)(f(xt,, t;) + f(Re,_,, ti1))/2 Heun’s method

Improvements to Determinisitic Sampling

Truncation-error-reducing ODE: s(t), o(t)

20 25
(c) DDIM [40] / Our ODE

40
600 t=0 5 10 15

-40
08 =0 200 400
(b) Variance exploding ODE

)
=00 0.2 0.4 06
(a) Variance preserving ODE

Figure 4: A sketch of ODE curvature in 1D where pqat, is two Dirac peaks at
X = 1. Axis is chosen to show ¢ € [0, 25] and zoom in ¢ € [0, 1]. (c)
sketches the curvature when s(t) = 1and o(t) = t. It has small curvature,
while the tangent directs to the datapoints.

Improvements to Determinisitic Sampling

Results

Table 2: Evaluation of our training improvements. The starting point (config A) is VP & VE using
our deterministic sampler. At the end (configs E,F), VP & VE only differ in the architecture of Fjy.

CIFAR-10 [28] at 32x32

FFHQ [26] 64 x64

AFHQV2 [7] 64x64

Conditional Unconditional Unconditional Unconditional
Training configuration VP VE VP VE VP VE VP VE
A Baseline [42] (*pre-trained) | 2.48 3.11 3.01* 3.77* 3.39 25.95 2.58 18.52
B + Adjust hyperparameters 2.18 248 251 294 3.13 22.53 243 23.12
C + Redistribute capacity 2.08 252 231 283 2.78 41.62 2.54 15.04
D + Our preconditioning 2.09 2.64 229 3.10 2.94 3.39 2.79 3.81
E + Our loss function 1.88 1.86 2.05 199 2.60 2.81 2.29 2.28
F + Non-leaky augmentation | 1.79 1.79 1.97 1.98 2.39 253 1.96 2.16
NFE 35 35 35 35 79 79 79 79

» Config B changes basic hyperparameters such as batch size,
learning rate, dropout, *etc*; it disable gradient clipping

» Config C improves the expressive power of the model.

» Configs D, E, and F are explained in the previous context.

Stochastic Sampling

Stochastic Sampling

SDE formulation

EDM reformulates forward and backward SDE as a sum of the
probability flow ODE and a varying-rate Langevin diffusion SDE:

dx: = —&(t)o(t)Vy log p(x; o(t))dt (25)

probability flow ODE

+ B(t)o(t)*Vy log p(x; o (t))dt + \/26(t)o (t)dw: (26)

deterministic noise decay noise injection

Langevin diffusion SDE

Stochastic Sampling

Role of stochasticity

In theory, ODE and SDE have the same marginal distributions.
However, in practice stochasticity often enhances the sample quality.
Authors try to explain the role of stochasticity as the followings:

1. X¢ deviates from the ideal marginal distribution, because of the
training error and truncation error.

2. The Langevin diffusion drives the sample towards the ideal
marginal distribution.

Stochastic Sampling

Algorithm

Stochastic sampling algorithm in EDM is executed in two steps:
1. Noise injection: integrate noise into samples according to +; > 0.

2. Noise decay with probability flow: solve the ODE from
heightened noise level to desired level.

Algorithm 2 Our stochastic sampler with o (t) = ¢ and s(t) = 1.
1: procedure STOCHASTICSAMPLER(Dp (x;0), ticqo,..., N}, Yie{o,....N—1}> Snoise)

2: samplexzo ~ N (0, t3 1 - S .

. o ipe o ,J\(I h 10} 30 by = {mm(%, \/5—1) lftze[s'ummS[mnX]
4 sample €; ~ N (0, SZ;, I) 0 otherwise

5: L + ti + viti > Select temporarily increased noise level £;
6: T @i+ -t e > Add new noise to move from ¢; to £;
7 di « (& — Do(#:;1:)) /1 > Evaluate dz/dt at £;
8: Tiy1 — B + (i1 —)ds > Take Euler step from £; to ¢;41
9: if t;11 # 0 then

10: d! « (@1 — Do(@it1;tiv1))/tisr > Apply 2™ order correction
11: Tit1 &i + (it _£1)(%dz+%d1{)

12: return Ty

Stochastic Sampling

Algorithm in real world

Uncond. CIFAR-10, Pre-trained, VP, Syoise = 1.000
! Y ; | |

Uncond. CIFAR-10, Pre-trained, VP, Shoise = 1.007
0.02 4 3 &

Step 0 100 200 500 1,000 2,000 5000 10,000 o Step0O 100 200 500 1,000 2,000 5,000 10,000

Figure 5: Observe the effect of Langevin diffusion in real world: there is
gradual image degradation with the repeated addition and removal of noise.
A random image is drawn from p(x; o) and Algorithm 2 is run for a certain
number of steps with v; = /2 — 1.

Stochastic Sampling

Algorithm in real world

Langevin diffusion is supposed to drive the sample towards the true
data distribution, however...

1. For low noise levels, images drift toward oversaturated colors.
2. For high noise levels, images become abstract when S, 5ise = 1.
Authors suspect that non-conservative vector field generated by

parametrized denoiser violates the premises of Langevin diffusion
since their analytical denoisers have not shown such degradation.

— Fix flaws of Dy(x; o) with heuristic!

Stochastic Sampling

Algorithm in real world

Fix flaws of Dy(x; o) with heuristic!
1. For low noise levels, images drift toward oversaturated colors.
— Enable stochasticity within t; € [Stmin, Stmax]-

2. For high noise levels, images become abstract when S,gise = 1.
— Dg(+) removes too much noise because of regression towards
the mean, which often happens when £, trained.

— Inflate the standard deviation of newly added noise: Spgise > 1.

3. New noise never exceeds the noise already in the image.
— Clamp 7;.

4. Controls the overal stochasticity by Schyrn-

Stochastic Sampling

Results

FID
3.2

3.0
2.8
2.6
24
22
2.0
18

FID FID
4.5 3.0
40 2.8
) 26
3.5 24
2.2
3.0 20
— Deterministic —— Suminmax = [0, 00] \ 18
— Sumingmax + Spoise = 1 — Optimal settings 2.5 B :
— Swoie =1 - - Original sampler — 1 16
«sus Jolicoeur-Martineau et al. (23] 20 2280 155
NFE=16 32 64 128 256 512 1024 2048 16 32 64 128 256 512 1024 2048 16 32 64 128 256 512 1024 2048

(a) Uncond. CIFAR-10, VP

(b) Uncond. CIFAR-10, VE

(c) Class-cond. ImageNet-64

Figure 6: Evaluation of stochastic sampler with ablations. Red line is
deterministic sampler while purple line is optimal stochastic sampler.

Reference |

@ Yaniv Benny and Lior Wolf.
Dynamic dual-output diffusion models.
CVPR, 2022.
@ Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila.
Training generative adversarial networks with limited data.
In NeurIPS, 2020.
B Jiaming Song, Chenlin Meng, and Stefano Ermon.

Denoising diffusion implicit models.
In ICLR, 2021.

