
Designing Diffusion Models in Real World

Junoh Kang

Computer Vision Laboratory
ECE, Seoul Na�onal University
junoh.kang@snu.ac.kr

Elucida�ng the Design Space of Diffusion-Based Genera�ve
Models (EDM)
The reasons of reviewing the paper

I EDM has limited theore�cal novelty, and its contribu�ons are
mainly engineering-oriented.

I In deep learning, prac�cal implementa�on is just as important as
theore�cal support.

I When proposing new paradigms without any baseline codes,
engineering skills are essen�al to bring the paradigms into the
real world.

I The sugges�ons in the paper may not be op�mal, but they are
theore�cally or empirically supported.

I I am not an engineering-oriented person and I want to learn such
reasonings from the paper.

Contents

1. Revisit Diffusion Models
2. Improvements to Training
3. Improvements to Determinisi�c Sampling
4. Stochas�c Sampling

Revisit Diffusion Models

Revisit Diffusion Models
Reformulate Diffusion Models

Song et al. [3] defines forward SDE as

dxt = f(t)xtdt+ g(t)dwt. (1)

As a consequence, the marginal dis�rbu�on at �me t becomes

p(xt|x0) = N (xt; s(t)x0, s(t)2σ(t)2I), (2)

where s(t) = exp(
∫ t
0 f(ξ)dξ) and σ(t) =

√∫ t
0

g(ξ)2
s(ξ)2 dξ.

Song et al. [3] indirectly defines the marginal distribu�on by f(·) and
g(·). However, the marginal distribu�on is the most important factor
for training diffusion models.

Revisit Diffusion Models
Reformulate Diffusion Models

Instead of defining f(·) and g(·), EDM directly defines the marginal
distribu�on by se�ng s(·) and σ(·):

p(xt) = s(t)−dp(xt/s(t);σ(t)), (3)

where p(x;σ) = [pdata ∗ N (0, σ2I)] (x).

Then, the corresponding probability flow ODE is

dxt = [ṡ(t)/s(t)− s(t)2σ̇(t)σ(t)∇x log p(xt/s(t);σ(t))] dt. (4)

Revisit Diffusion Models
Obstacles in diffusion models

1. Genera�on by diffusion models can be interpreted as solving

dxt = f(xt, s(t), σ(t))dt. (5)

2. Since f(xt, s(t), σ(t)) is not known, it is parametrized by a
network fθ(xt, s(t), σ(t)). The inaccurate approxima�on on the
target causes degrada�on.→ Be�er training.

3. The solu�on at t = 0 given boundary condi�on at t = T is

x0 = xT +
∫ T

0
f(xt, s(t), σ(t))dt. (6)

The integral is numerically calculated, which causes trunca�on
error.→ Reduce trunca�on errors, focus on important region.

Revisit Diffusion Models
Design Space of Diffusion Models

I Components regarding Training
I Parametriza�on
I Network precondi�oning: cskip(σ), cout(σ), cin(σ), cnoise(σ)
I Loss weigh�ng: λ(t)
I Noise distribu�on: σ ∼ pnoise
I Augmenta�on

I Components regarding Determinis�c Sampling
I Trunca�on-error-reducing ODE: s(t), σ(t)
I Trunca�on-error-reducing algorithms: Higher-order inegrators
I Distribu�ng trunca�on errors properly: Discre�za�on {ti}N0

I Components regarding Stochas�c Sampling
I Rate of replaced noises β(t)
I Heuris�cs: Stmin, Stmax, Snoise, Schurn.

Improvements to Training

Training
Parametriza�on

For s(t) = 1, D(xt, σ) is a denoiser which minimizes `2-norm with y:

Ey∼pdataE||D(y+ n)− y||22. (7)

The rela�on between a score func�on and the ideal denoiser is

∇x log p(x;σ) = (D(x;σ)− x)/σ2. (8)

Networks in many baselines predicts either D(x, σ) or n.

Training
Parametriza�on

Benny et al. [1] observes that predic�ng the denoised output, D(x;σ),
is eaiser for high noise level, while predic�ng the noise, n, is eaiser for
low noise level.

Figure 1: Loss comparison between predic�ng the denoised output or the
added noise.

Training
Network precondi�oning

To predict D(x;σ) or n, or something in between according to the
noise level, EDM parametrizes the denoiser func�on by

Dθ(x;σ) = cskip(σ)x+ cout(σ)Fθ(cin(σ)x; cnoise(σ)), (9)

where Fθ is a neural network.
I cskip modulates skip connec�on.
I cin controls input scale.
I cout controls output scale.
I cnoise maps noise level into a condi�oning input.

Training
Network precondi�oning

Then, the loss func�on (7) is

Eσ,y,b

λ(σ)cout(σ)2︸ ︷︷ ︸
effec�ve weight

|| Fθ(cin(σ)(y+ n; cnoise(σ)))︸ ︷︷ ︸
network output

− 1
cout(σ)

(y− cskip(σ)(y+ n))︸ ︷︷ ︸
effec�ve training target

||22

 .
(10)

Training
Network precondi�oning

1. cnoise(σ) = 1
4 log(σ) is chosen empirically.

2. Inputs should have unit variance.

Vary,n [cin(σ)(y+ n)] = 1 (11)

⇒ cin(σ) = 1/
√
σ2 + σ2data. (12)

3. Effec�ve training target should have unit variance.

Vary,n
[

1
cout(σ)

(y− cskip(σ)(y+ n))
]
= 1 (13)

⇒ cout(σ)2 = (1− cskip(σ))2σ2data + cskip(σ)2σ2. (14)

Training
Network precondi�oning

4. Errors of network should not be amplified.

cskip(σ) = argmin
cskip(σ)

cout(σ) (15)

⇒

{
cskip(σ) = σ2data/(σ

2 + σ2data)

cout(σ) = σ · σdata/
√
σ2 + σ2data

(16)

5. Effecitve weight should be uniform.

λ(σ)cout(σ)2 = 1 (17)
⇒ λ(σ) = (σ2 + σ2data)/(σ · σdata)2. (18)

6. Finally, the expected value of the loss at each noise level is 1.
Moreover, the change of effec�ve training target according to σ
coincides to the observa�on of Benny et al. [1].

Training
Netowrk precondi�oning & noise distribu�on

At low noise levels, sepera�ng the small noise components is difficult
and irrelevant, whereas at high noise levels, the correct answer
approaches to dataset average; EDM focuses on middle range noise
levels for training: log(σ) ∼ N (−1.2, 1.2).

Figure 2: Observed loss per noise level. The shaded regions represent the
standard devia�on over 10k rondaom samples. EDM’s proposed training
sample density is shown by the dashed red curve.

Training
Augmenta�on

EDM uses augmenta�on pipeline from the GAN literature [2].

Training
Augmenta�on

1. Each augmenta�on is enabled with Aprob.
2. Draw ai from each enabled augmenta�on and construct

transforma�on matrix.
3. Pass data through 2× supersampled high-quality Wavelet filters.
4. Construct a 9-dimensional condi�oning input vector for

non-leaking augmenta�on. This vector makes the network to
perform auxiliary tasks.

Improvements to
Determinisi�c Sampling

Improvements to Determinisi�c Sampling
Higher-order integrators & Discre�za�on

For s(t) = 1 the ODE becomes

dxt = [−σ̇(t)σ(t)∇x log p(xt;σ(t))] dt. (19)

With σ(t) = t and denoiser, the ODE simplifies into

dxt/dt = (xt − D(xt; t))/t (20)
:= f(xt, t) (21)

Improvements to Determinisi�c Sampling
Trunca�on-error-reducing algorithms: Higher-order inegrators

Euler method approximates the integral by∫ ti−1

ti
f(xt, t)dt = (ti−1 − ti)f(xti , ti) + O(|ti−1 − ti|2). (22)

Therefore, the total trunca�on error is O(max |ti−1 − ti|).
Let x̂ti−1 is a solu�on obtained by Euler method. Then, Heun’s method
approximates the integral by∫ ti−1

ti
f(xt, t)dt = (ti−1 − ti)(f(xti , ti) + f(x̂ti−1 , ti−1))/2+ O(|ti−1 − ti|3).

(23)

Therefore, the total trunca�on error is O(max |ti−1 − ti|2). Huen’s
method decreases trunca�on error at the cost of one addi�onal
evalua�on of the network.

Improvements to Determinisi�c Sampling
Trunca�on-error-reducing algorithms: Higher-order inegrators

Improvements to Determinisi�c Sampling
Distribu�ng trunca�on error properly: Discre�za�ons {ti}N0

As long as using numerical integrators with limited computa�onal
resources, trunca�on errors are inevitable. In terms of obtaining ODE
trajectories accurately, it is important to minimize total trunca�on
errors. However, the interests of diffusion models at genera�on are
only the solu�ons at low noise levels; it is reasonable to focus on low
noise levels.

For discre�za�on

tN−i = σi<N = (σ
1/ρ
max +

i
N− 1

(σ
1/ρ
min − σ

1/ρ
max))

ρ, σN = 0, (24)

increasing ρ results dense discre�za�ons at low noise levels.

Improvements to Determinisi�c Sampling
Distribu�ng trunca�on error properly: Discre�za�ons {ti}N0

Figure 3: (a),(b) Local trunca�on error at different noise levels. (c) FID as a
func�on of ρ.

ρ = 3 nearly equalizes the trunca�on error at each step as in
Figure 3(a),(b). However, ρ = 7 generates be�er samples as in
Figure 3(c).

Proper value of ρmay change according to the tasks. e.g., Equalized
trunca�on error is needed for solving ODE in both direc�ons.

Improvements to Determinisi�c Sampling
Trunca�on-error-reducing ODE: s(t), σ(t)

Many integrators including Euler and Heun’s method have small
trunca�on errors if f(xt, t) has small curvature, or is close to linear
func�on. s(t) and σ(t) determine the shape of the ODE solu�on
trajectories, which is closely related to linearity of the f(·).∫ ti−1

ti
f(xt, t)dt ≈

{
(ti−1 − ti)f(xti , ti) Euler method
(ti−1 − ti)(f(xti , ti) + f(x̂ti−1 , ti−1))/2 Heun’s method

Improvements to Determinisi�c Sampling
Trunca�on-error-reducing ODE: s(t), σ(t)

Figure 4: A sketch of ODE curvature in 1D where pdata is two Dirac peaks at
x = ±1. Axis is chosen to show σ ∈ [0, 25] and zoom in σ ∈ [0, 1]. (c)
sketches the curvature when s(t) = 1 and σ(t) = t. It has small curvature,
while the tangent directs to the datapoints.

Improvements to Determinisi�c Sampling
Results

I Config B changes basic hyperparameters such as batch size,
learning rate, dropout, *etc*; it disable gradient clipping

I Config C improves the expressive power of the model.
I Configs D, E, and F are explained in the previous context.

Stochas�c Sampling

Stochas�c Sampling
SDE formula�on

EDM reformulates forward and backward SDE as a sum of the
probability flow ODE and a varying-rate Langevin diffusion SDE:

dx± =−σ̇(t)σ(t)∇x log p(x;σ(t))dt︸ ︷︷ ︸
probability flow ODE

(25)

± β(t)σ(t)2∇x log p(x;σ(t))dt︸ ︷︷ ︸
determinis�c noise decay

+
√
2β(t)σ(t)dwt︸ ︷︷ ︸
noise injec�on︸ ︷︷ ︸

Langevin diffusion SDE

(26)

Stochas�c Sampling
Role of stochas�city

In theory, ODE and SDE have the same marginal distribu�ons.
However, in prac�ce stochas�city o�en enhances the sample quality.

Authors try to explain the role of stochas�city as the followings:
1. xt deviates from the ideal marginal distribu�on, because of the

training error and trunca�on error.
2. The Langevin diffusion drives the sample towards the ideal

marginal distribu�on.

Stochas�c Sampling
Algorithm

Stochas�c sampling algorithm in EDM is executed in two steps:
1. Noise injec�on: integrate noise into samples according to γi ≥ 0.
2. Noise decay with probability flow: solve the ODE from

heightened noise level to desired level.

Stochas�c Sampling
Algorithm in real world

Figure 5: Observe the effect of Langevin diffusion in real world: there is
gradual image degrada�on with the repeated addi�on and removal of noise.
A random image is drawn from p(x;σ) and Algorithm 2 is run for a certain
number of steps with γi =

√
2− 1.

Stochas�c Sampling
Algorithm in real world

Langevin diffusion is supposed to drive the sample towards the true
data distribu�on, however...
1. For low noise levels, images dri� toward oversaturated colors.
2. For high noise levels, images become abstract when Snoise = 1.

Authors suspect that non-conserva�ve vector field generated by
parametrized denoiser violates the premises of Langevin diffusion
since their analy�cal denoisers have not shown such degrada�on.

→ Fix flaws of Dθ(x;σ) with heuris�c!

Stochas�c Sampling
Algorithm in real world

Fix flaws of Dθ(x;σ) with heuris�c!
1. For low noise levels, images dri� toward oversaturated colors.
→ Enable stochas�city within ti ∈ [Stmin, Stmax].

2. For high noise levels, images become abstract when Snoise = 1.
→ Dθ(·) removes too much noise because of regression towards
the mean, which o�en happens when `2 trained.
→ Inflate the standard devia�on of newly added noise: Snoise > 1.

3. New noise never exceeds the noise already in the image.
→ Clamp γi.

4. Controls the overal stochas�city by Schurn.

Stochas�c Sampling
Results

Figure 6: Evalua�on of stochas�c sampler with abla�ons. Red line is
determinis�c sampler while purple line is op�mal stochas�c sampler.

Reference I

Yaniv Benny and Lior Wolf.
Dynamic dual-output diffusion models.
CVPR, 2022.

Tero Karras, Miika Ai�ala, Janne Hellsten, Samuli Laine, Jaakko Leh�nen, and Timo Aila.
Training genera�ve adversarial networks with limited data.
In NeurIPS, 2020.

Jiaming Song, Chenlin Meng, and Stefano Ermon.
Denoising diffusion implicit models.
In ICLR, 2021.

